Difference between revisions of "1983 AIME Problems/Problem 4"
Hastapasta (talk | contribs) m (→Solution 4) |
(Adding more straightforward(?) law of cosines solution. Removing inaccurate comment about problem being "trivialized." Improving Asy code.) |
||
| Line 7: | Line 7: | ||
real r=10; | real r=10; | ||
pair O=(0,0), | pair O=(0,0), | ||
| − | A=r*dir(45),B=(A.x,A.y-r) | + | A=r*dir(45),B=(A.x,A.y-r); |
path P=circle(O,r); | path P=circle(O,r); | ||
| − | C=intersectionpoint(B--(B.x+r,B.y),P); | + | pair C=intersectionpoint(B--(B.x+r,B.y),P); |
| − | draw(P); | + | // Drawing arc instead of full circle |
| + | //draw(P); | ||
| + | draw(arc(O, r, degrees(A), degrees(C))); | ||
draw(C--B--A--B); | draw(C--B--A--B); | ||
dot(A); dot(B); dot(C); | dot(A); dot(B); dot(C); | ||
| Line 26: | Line 28: | ||
size(150); defaultpen(linewidth(0.6)+fontsize(11)); | size(150); defaultpen(linewidth(0.6)+fontsize(11)); | ||
real r=10; | real r=10; | ||
| − | pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r) | + | pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); |
pair D=(A.x,0),F=(0,B.y); | pair D=(A.x,0),F=(0,B.y); | ||
path P=circle(O,r); | path P=circle(O,r); | ||
| − | C=intersectionpoint(B--(B.x+r,B.y),P); | + | pair C=intersectionpoint(B--(B.x+r,B.y),P); |
draw(P); | draw(P); | ||
draw(C--B--O--A--B); | draw(C--B--O--A--B); | ||
| Line 47: | Line 49: | ||
===Solution 2=== | ===Solution 2=== | ||
| + | We'll use the [[law of cosines]]. Let <math>O</math> be the center of the circle; we wish to find <math>OB</math>. We know how long <math>OA</math> and <math>AB</math> are, so if we can find <math>\cos \angle OAB</math>, we'll be in good shape. | ||
| + | |||
| + | <center><asy> | ||
| + | size(150); defaultpen(linewidth(0.6)+fontsize(11)); | ||
| + | real r=10; | ||
| + | pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); | ||
| + | pair D=(A.x,0),F=(0,B.y); | ||
| + | path P=circle(O,r); | ||
| + | pair C=intersectionpoint(B--(B.x+r,B.y),P); | ||
| + | draw(P); | ||
| + | draw(C--B--O--A--B); | ||
| + | draw(O--B); draw(A--C); | ||
| + | dot(O); dot(A); dot(B); dot(C); | ||
| + | label("$O$",O,SW); | ||
| + | label("$A$",A,NE); | ||
| + | label("$B$",B,S); | ||
| + | label("$C$",C,SE); | ||
| + | </asy></center> | ||
| + | |||
| + | We can find <math>\cos \angle OAB</math> using angles <math>OAC</math> and <math>BAC</math>. First we note that by [[Pythagorean theorem | Pythagoras]], | ||
| + | <cmath> AC = \sqrt{AB^2 + BC^2} = \sqrt{36 + 4} = \sqrt{40} = 2 \sqrt{10}. </cmath> | ||
| + | If we let <math>M</math> be the midpoint of <math>AC</math>, that mean that <math>AM = \sqrt{10}</math>. Since <math>\triangle OAC</math> is isosceles (<math>OA = OC</math> from the definition of a circle), <math>M</math> is also the foot of the altitude from <math>O</math> to <math>AC.</math> | ||
| + | |||
| + | <center><asy> | ||
| + | size(150); defaultpen(linewidth(0.6)+fontsize(11)); | ||
| + | real r=10; | ||
| + | pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); | ||
| + | pair D=(A.x,0); | ||
| + | path P=circle(O,r); | ||
| + | pair C=intersectionpoint(B--(B.x+r,B.y),P); | ||
| + | pair M = (A+C)/2; | ||
| + | draw(P); | ||
| + | draw(O--C--A--cycle); | ||
| + | draw(O--M, dashed); | ||
| + | draw(rightanglemark(O,M,A,25)); | ||
| + | dot(O); dot(A); dot(C); | ||
| + | label("$O$",O,SW); | ||
| + | label("$A$",A,NE); | ||
| + | label("$M$",M,SSW); | ||
| + | label("$C$",C,SE); | ||
| + | label("$\sqrt{50}$", (O+A)/2, NW); | ||
| + | label("$\sqrt{10}$", (A+M)/2, E); | ||
| + | </asy></center> | ||
| + | It follows that <math>OM = \sqrt{40} = 2 \sqrt{10}</math>. Therefore | ||
| + | <cmath> \begin{align*} | ||
| + | \cos \angle OAC = \frac{\sqrt{10}}{\sqrt{50}} &= \frac{1}{\sqrt{5}}, \\ | ||
| + | \sin \angle OAC = \frac{2 \sqrt{10}}{\sqrt{50}} &= \frac{2}{\sqrt{5}}. \end{align*}</cmath> | ||
| + | Meanwhile, from right triangle <math>ABC,</math> we have | ||
| + | <cmath> \begin{align*} | ||
| + | \cos \angle BAC = \frac{6}{\sqrt{40}} &= \frac{3}{\sqrt{10}}, \\ | ||
| + | \sin \angle BAC = \frac{2}{\sqrt{40}} &= \frac{1}{\sqrt{10}}. \end{align*} </cmath> | ||
| + | |||
| + | This means that by the [[Trigonometric_identities#Angle_addition_identities | angle subtraction formulas]], | ||
| + | <cmath> \begin{align*} | ||
| + | \cos \angle OAB &= \cos (\angle OAC - \angle BAC) \\ | ||
| + | &= \cos \angle OAC \cos \angle BAC + \sin \angle OAC \sin \angle BAC \\ | ||
| + | &= \frac{1}{\sqrt{5}} \cdot \frac{3}{\sqrt{10}} + \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}} \\ | ||
| + | &= \frac{5}{5 \sqrt{2}} = \frac{1}{\sqrt{2}}. \end{align*} </cmath> | ||
| + | |||
| + | Now we have all we need to use the law of cosines on <math>\triangle OAB.</math> This tells us that | ||
| + | <cmath> \begin{align*} | ||
| + | OB^2 &= AO^2 + AB^2 - 2 AO \cdot AB \cdot \cos \angle OAB \\ | ||
| + | &= 50 + 36 - 2 \cdot 5 \sqrt{2} \cdot 6 \cdot \frac{1}{\sqrt{2}} \\ | ||
| + | &= 86 - 2 \cdot 5 \cdot 6 \\ | ||
| + | &= 26. \end{align*} </cmath> | ||
| + | |||
| + | ===Solution 3=== | ||
Drop perpendiculars from <math>O</math> to <math>AB</math> (with foot <math>T_1</math>), <math>M</math> to <math>OT_1</math> (with foot <math>T_2</math>), and <math>M</math> to <math>AB</math> (with foot <math>T_3</math>). | Drop perpendiculars from <math>O</math> to <math>AB</math> (with foot <math>T_1</math>), <math>M</math> to <math>OT_1</math> (with foot <math>T_2</math>), and <math>M</math> to <math>AB</math> (with foot <math>T_3</math>). | ||
Also, mark the midpoint <math>M</math> of <math>AC</math>. | Also, mark the midpoint <math>M</math> of <math>AC</math>. | ||
| − | |||
<center><asy> | <center><asy> | ||
size(200); | size(200); | ||
| Line 77: | Line 145: | ||
Then, notice that <math>\angle MOT_2 = \angle T_3MO = \angle BAC</math>. Therefore, the two blue triangles are congruent, from which we deduce <math>MT_2 = 2</math> and <math>OT_2 = 6</math>. As <math>T_3B = 3</math> and <math>MT_3 = 1</math>, we subtract and get <math>OT_1 = 5,T_1B = 1</math>. Then the Pythagorean Theorem tells us that <math>OB^2 = \boxed{026}</math>. | Then, notice that <math>\angle MOT_2 = \angle T_3MO = \angle BAC</math>. Therefore, the two blue triangles are congruent, from which we deduce <math>MT_2 = 2</math> and <math>OT_2 = 6</math>. As <math>T_3B = 3</math> and <math>MT_3 = 1</math>, we subtract and get <math>OT_1 = 5,T_1B = 1</math>. Then the Pythagorean Theorem tells us that <math>OB^2 = \boxed{026}</math>. | ||
| − | ===Solution | + | ===Solution 4=== |
Draw segment <math>OB</math> with length <math>x</math>, and draw radius <math>OQ</math> such that <math>OQ</math> bisects chord <math>AC</math> at point <math>M</math>. This also means that <math>OQ</math> is perpendicular to <math>AC</math>. By the Pythagorean Theorem, we get that <math>AC=\sqrt{(BC)^2+(AB)^2}=2\sqrt{10}</math>, and therefore <math>AM=\sqrt{10}</math>. Also by the Pythagorean theorem, we can find that <math>OM=\sqrt{50-10}=2\sqrt{10}</math>. | Draw segment <math>OB</math> with length <math>x</math>, and draw radius <math>OQ</math> such that <math>OQ</math> bisects chord <math>AC</math> at point <math>M</math>. This also means that <math>OQ</math> is perpendicular to <math>AC</math>. By the Pythagorean Theorem, we get that <math>AC=\sqrt{(BC)^2+(AB)^2}=2\sqrt{10}</math>, and therefore <math>AM=\sqrt{10}</math>. Also by the Pythagorean theorem, we can find that <math>OM=\sqrt{50-10}=2\sqrt{10}</math>. | ||
Next, find <math>\angle BAC=\arctan{\left(\frac{2}{6}\right)}</math> and <math>\angle OAM=\arctan{\left(\frac{2\sqrt{10}}{\sqrt{10}}\right)}</math>. Since <math>\angle OAB=\angle OAM-\angle BAC</math>, we get <cmath>\angle OAB=\arctan{2}-\arctan{\frac{1}{3}}</cmath><cmath>\tan{(\angle OAB)}=\tan{(\arctan{2}-\arctan{\frac{1}{3}})}</cmath>By the subtraction formula for <math>\tan</math>, we get<cmath>\tan{(\angle OAB)}=\frac{2-\frac{1}{3}}{1+2\cdot \frac{1}{3}}</cmath><cmath>\tan{(\angle OAB)}=1</cmath><cmath>\cos{(\angle OAB)}=\frac{1}{\sqrt{2}}</cmath>Finally, by the Law of Cosines on <math>\triangle OAB</math>, we get <cmath>x^2=50+36-2(6)\sqrt{50}\frac{1}{\sqrt{2}}</cmath><cmath>x^2=\boxed{026}.</cmath> | Next, find <math>\angle BAC=\arctan{\left(\frac{2}{6}\right)}</math> and <math>\angle OAM=\arctan{\left(\frac{2\sqrt{10}}{\sqrt{10}}\right)}</math>. Since <math>\angle OAB=\angle OAM-\angle BAC</math>, we get <cmath>\angle OAB=\arctan{2}-\arctan{\frac{1}{3}}</cmath><cmath>\tan{(\angle OAB)}=\tan{(\arctan{2}-\arctan{\frac{1}{3}})}</cmath>By the subtraction formula for <math>\tan</math>, we get<cmath>\tan{(\angle OAB)}=\frac{2-\frac{1}{3}}{1+2\cdot \frac{1}{3}}</cmath><cmath>\tan{(\angle OAB)}=1</cmath><cmath>\cos{(\angle OAB)}=\frac{1}{\sqrt{2}}</cmath>Finally, by the Law of Cosines on <math>\triangle OAB</math>, we get <cmath>x^2=50+36-2(6)\sqrt{50}\frac{1}{\sqrt{2}}</cmath><cmath>x^2=\boxed{026}.</cmath> | ||
| − | ===Solution | + | ===Solution 5=== |
We use coordinates. Let the circle have center <math>(0,0)</math> and radius <math>\sqrt{50}</math>; this circle has equation <math>x^2 + y^2 = 50</math>. Let the coordinates of <math>B</math> be <math>(a,b)</math>. We want to find <math>a^2 + b^2</math>. <math>A</math> and <math>C</math> with coordinates <math>(a,b+6)</math> and <math>(a+2,b)</math>, respectively, both lie on the circle. From this we obtain the system of equations | We use coordinates. Let the circle have center <math>(0,0)</math> and radius <math>\sqrt{50}</math>; this circle has equation <math>x^2 + y^2 = 50</math>. Let the coordinates of <math>B</math> be <math>(a,b)</math>. We want to find <math>a^2 + b^2</math>. <math>A</math> and <math>C</math> with coordinates <math>(a,b+6)</math> and <math>(a+2,b)</math>, respectively, both lie on the circle. From this we obtain the system of equations | ||
Revision as of 17:45, 2 April 2022
Contents
Problem
A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is
cm, the length of
is
cm and that of
is
cm. The angle
is a right angle. Find the square of the distance (in centimeters) from
to the center of the circle.
Solution
Solution 1
Because we are given a right angle, we look for ways to apply the Pythagorean Theorem. Let the foot of the perpendicular from
to
be
and let the foot of the perpendicular from
to the line
be
. Let
and
. We're trying to find
.
![[asy] size(150); defaultpen(linewidth(0.6)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); pair D=(A.x,0),F=(0,B.y); path P=circle(O,r); pair C=intersectionpoint(B--(B.x+r,B.y),P); draw(P); draw(C--B--O--A--B); draw(D--O--F--B,dashed); dot(O); dot(A); dot(B); dot(C); label("$O$",O,SW); label("$A$",A,NE); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NE); label("$E$",F,SW); [/asy]](http://latex.artofproblemsolving.com/b/c/a/bcac965883252498b864ad906b153cd402838000.png)
Applying the Pythagorean Theorem,
and
.
Thus,
, and
. We solve this system to get
and
, such that the answer is
.
Solution 2
We'll use the law of cosines. Let
be the center of the circle; we wish to find
. We know how long
and
are, so if we can find
, we'll be in good shape.
![[asy] size(150); defaultpen(linewidth(0.6)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); pair D=(A.x,0),F=(0,B.y); path P=circle(O,r); pair C=intersectionpoint(B--(B.x+r,B.y),P); draw(P); draw(C--B--O--A--B); draw(O--B); draw(A--C); dot(O); dot(A); dot(B); dot(C); label("$O$",O,SW); label("$A$",A,NE); label("$B$",B,S); label("$C$",C,SE); [/asy]](http://latex.artofproblemsolving.com/5/5/7/557f2e442b02c5c1ad40cbfdd66bc18626030627.png)
We can find
using angles
and
. First we note that by Pythagoras,
If we let
be the midpoint of
, that mean that
. Since
is isosceles (
from the definition of a circle),
is also the foot of the altitude from
to
![[asy] size(150); defaultpen(linewidth(0.6)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r); pair D=(A.x,0); path P=circle(O,r); pair C=intersectionpoint(B--(B.x+r,B.y),P); pair M = (A+C)/2; draw(P); draw(O--C--A--cycle); draw(O--M, dashed); draw(rightanglemark(O,M,A,25)); dot(O); dot(A); dot(C); label("$O$",O,SW); label("$A$",A,NE); label("$M$",M,SSW); label("$C$",C,SE); label("$\sqrt{50}$", (O+A)/2, NW); label("$\sqrt{10}$", (A+M)/2, E); [/asy]](http://latex.artofproblemsolving.com/8/0/4/804ba7a0599d3ff45160b45a45e6819be9e2aea2.png)
It follows that
. Therefore
Meanwhile, from right triangle
we have
This means that by the angle subtraction formulas,
Now we have all we need to use the law of cosines on
This tells us that
Solution 3
Drop perpendiculars from
to
(with foot
),
to
(with foot
), and
to
(with foot
).
Also, mark the midpoint
of
.
![[asy] size(200); pair dl(string name, pair loc, pair offset) { dot(loc); label(name,loc,offset); return loc; }; pair a[] = {(0,0),(0,5),(1,5),(1,7),(-2,6),(-5,5),(-2,5),(-2,6),(0,6)}; string n[] = {"O","$T_1$","B","C","M","A","$T_3$","M","$T_2$"}; for(int i=0;i<a.length;++i) { dl(n[i],a[i],dir(degrees(a[i],false) ) ); draw(a[(i-1)%a.length]--a[i]); }; dot(a); draw(a[5]--a[1]); draw(a[0]--a[3]); draw(a[0]--a[4]); draw(a[0]--a[2]); draw(a[0]--a[5]); draw(a[5]--a[2]--a[3]--cycle,blue+linewidth(0.7)); draw(a[0]--a[8]--a[7]--cycle,blue+linewidth(0.7)); [/asy]](http://latex.artofproblemsolving.com/e/c/8/ec8178dd6f1c58944b30643b6498df4a33724323.png)
First notice that by computation,
is a
isosceles triangle, so
.
Then, notice that
. Therefore, the two blue triangles are congruent, from which we deduce
and
. As
and
, we subtract and get
. Then the Pythagorean Theorem tells us that
.
Solution 4
Draw segment
with length
, and draw radius
such that
bisects chord
at point
. This also means that
is perpendicular to
. By the Pythagorean Theorem, we get that
, and therefore
. Also by the Pythagorean theorem, we can find that
.
Next, find
and
. Since
, we get ![]()
By the subtraction formula for
, we get![]()
![]()
Finally, by the Law of Cosines on
, we get ![]()
Solution 5
We use coordinates. Let the circle have center
and radius
; this circle has equation
. Let the coordinates of
be
. We want to find
.
and
with coordinates
and
, respectively, both lie on the circle. From this we obtain the system of equations
After expanding these terms, we notice by subtracting the first and second equations, we can cancel out
and
. after substituting
and plugging back in, we realize that
or
. Since the first point is out of the circle, we find that
is the only relevant answer. This paragraph is written by ~hastapasta.
Solving, we get
and
, so the distance is
.
See Also
| 1983 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
