Difference between revisions of "2022 AMC 10B Problems/Problem 7"
(→Alternate Solution) |
|||
| Line 6: | Line 6: | ||
<math>\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 16</math> | <math>\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 16</math> | ||
| − | ==Solution== | + | ==Solution 1== |
Let <math>p</math> and <math>q</math> be the roots of <math>x^{2}+kx+36.</math> By [[Vieta's Formulas]], we have <math>p+q=-k</math> and <math>pq=36.</math> | Let <math>p</math> and <math>q</math> be the roots of <math>x^{2}+kx+36.</math> By [[Vieta's Formulas]], we have <math>p+q=-k</math> and <math>pq=36.</math> | ||
| Line 14: | Line 14: | ||
~stevens0209 ~MRENTHUSIASM ~<math>\color{magenta} zoomanTV</math> | ~stevens0209 ~MRENTHUSIASM ~<math>\color{magenta} zoomanTV</math> | ||
| − | == | + | ==Solution 2== |
Note that <math>k</math> must be an integer. By the quadratic formula, <math>x=\frac{-k \pm \sqrt{k^2-144}}{2}.</math> Since <math>144</math> is a multiple of | Note that <math>k</math> must be an integer. By the quadratic formula, <math>x=\frac{-k \pm \sqrt{k^2-144}}{2}.</math> Since <math>144</math> is a multiple of | ||
<math>4</math>, <math>k</math> and <math>k^2-144</math> have the same parity, so <math>x</math> is an integer if and only if <math>k^2-144</math> is a perfect square. | <math>4</math>, <math>k</math> and <math>k^2-144</math> have the same parity, so <math>x</math> is an integer if and only if <math>k^2-144</math> is a perfect square. | ||
| − | Let <math>k^2-144=n^2.</math> Then, <math>(k+n)(k-n)=144.</math> Since <math>k</math> is an integer and <math>144</math> is even, <math>k+n</math> and <math>k-n</math> must both be even. Assuming that <math>k</math> is positive, we get <math>5</math> possible values of <math>k+n</math>, namely <math>2, 4, 8, 6, 12</math>, which will give distinct positive values of <math>k</math>, but <math>k+n=12</math> gives <math>k+n=k-n</math> and <math>n=0</math>, giving <math>2</math> identical integer roots. Therefore, there are <math>4</math> distinct positive values of <math>k.</math> Multiplying that by <math>2</math> to take the negative values into account, we get <math>4*2=\boxed{8}</math> values of <math>k.</math> | + | Let <math>k^2-144=n^2.</math> Then, <math>(k+n)(k-n)=144.</math> Since <math>k</math> is an integer and <math>144</math> is even, <math>k+n</math> and <math>k-n</math> must both be even. Assuming that <math>k</math> is positive, we get <math>5</math> possible values of <math>k+n</math>, namely <math>2, 4, 8, 6, 12</math>, which will give distinct positive values of <math>k</math>, but <math>k+n=12</math> gives <math>k+n=k-n</math> and <math>n=0</math>, giving <math>2</math> identical integer roots. Therefore, there are <math>4</math> distinct positive values of <math>k.</math> Multiplying that by <math>2</math> to take the negative values into account, we get <math>4*2=\boxed{\textbf{(B) }8}</math> values of <math>k.</math> |
pianoboy | pianoboy | ||
Revision as of 08:25, 18 November 2022
- The following problem is from both the 2022 AMC 10B #7 and 2022 AMC 12B #4, so both problems redirect to this page.
Contents
Problem
For how many values of the constant
will the polynomial
have two distinct integer roots?
Solution 1
Let
and
be the roots of
By Vieta's Formulas, we have
and
This shows that
and
must be distinct factors of
The possibilities of
are
Each unordered pair gives a unique value of
Therefore, there are
values of
namely
~stevens0209 ~MRENTHUSIASM ~
Solution 2
Note that
must be an integer. By the quadratic formula,
Since
is a multiple of
,
and
have the same parity, so
is an integer if and only if
is a perfect square.
Let
Then,
Since
is an integer and
is even,
and
must both be even. Assuming that
is positive, we get
possible values of
, namely
, which will give distinct positive values of
, but
gives
and
, giving
identical integer roots. Therefore, there are
distinct positive values of
Multiplying that by
to take the negative values into account, we get
values of
pianoboy
See Also
| 2022 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2022 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 3 |
Followed by Problem 5 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.