Difference between revisions of "2023 USAJMO Problems/Problem 2"
(→Solution 1) |
|||
Line 15: | Line 15: | ||
-dragoon and rhydon516 (: | -dragoon and rhydon516 (: | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Let <math>D</math> be the foot of the altitude from <math>A</math> onto <math>BC</math>. We want to show that <math>DM=MQ</math> for obvious reasons. | ||
+ | |||
+ | Notice that <math>ADPC</math> is cyclic and that <math>M</math> lies on the radical axis of <math>(ABPQ)</math> and <math>(ADPC)</math>. By Power of a Point, <math>(CM)(DM)=(BM)(MQ)</math>. As <math>BM=CM</math>, we have <math>DM=MQ</math>, as desired. | ||
+ | |||
+ | - Leo.Euler |
Revision as of 15:36, 16 April 2023
Problem
(Holden Mui) In an acute triangle , let
be the midpoint of
. Let
be the foot of the perpendicular from
to
. Suppose that the circumcircle of triangle
intersects line
at two distinct points
and
. Let
be the midpoint of
. Prove that
.
Solution 1
The condition is solved only if is isosceles, which in turn only happens if
is perpendicular to
.
Now, draw the altitude from to
, and call that point
. Because of the Midline Theorem, the only way that this condition is met is if
, or if
.
By similarity,
. Using similarity ratios, we get that
. Rearranging, we get that
. This implies that
is cyclic.
Now we start using Power of a Point. We get that , and
from before. This leads us to get that
.
Now we assign variables to the values of the segments. Let and
. The equation from above gets us that
. As
from the problem statements, this gets us that
and
, and we are done.
-dragoon and rhydon516 (:
Solution 2
Let be the foot of the altitude from
onto
. We want to show that
for obvious reasons.
Notice that is cyclic and that
lies on the radical axis of
and
. By Power of a Point,
. As
, we have
, as desired.
- Leo.Euler