Difference between revisions of "2011 USAMO Problems/Problem 3"
m (→Solution 2: clarification) |
|||
Line 11: | Line 11: | ||
===Solution 2=== | ===Solution 2=== | ||
− | We work in the complex plane, where lowercase letters denote point | + | We work in the complex plane, where lowercase letters denote their corresponding point's poition. Let <math>P</math> denote hexagon <math>ABCDEF</math>. Since <math>AB=DE</math>, the condition <math>AB\not\parallel DE</math> is equivalent to <math>a-b+d-e\ne 0</math>. |
Construct a "phantom hexagon" <math>P'=A'B'C'D'E'F'</math> as follows: let <math>A'C'E'</math> be a triangle with <math>\angle{A'C'E'}=\angle{F}</math>, <math>\angle{C'E'A'}=\angle{B}</math>, and <math>\angle{E'A'C'}=\angle{F}</math> (this is possible since <math>\angle{B}+\angle{D}+\angle{F}=180^\circ</math> by the angle conditions), and reflect <math>A',C',E'</math> over its sides to get points <math>D',F',B'</math>, respectively. By rotation and reflection if necessary, we assume <math>A'B'\parallel AB</math> and <math>P',P</math> have the same orientation (clockwise or counterclockwise), i.e. <math>\frac{b-a}{b'-a'}\in\mathbb{R}^+</math>. It's easy to verify that <math>\angle{X'}=\angle{X}</math> for <math>X\in\{A,B,C,D,E,F\}</math> and opposite sides of <math>P'</math> have equal lengths. As the corresponding sides of <math>P</math> and <math>P'</math> must then be parallel, there exist positive reals <math>r,s,t</math> such that <math>r=\frac{a-b}{a'-b'}=\frac{d-e}{d'-e'}</math>, <math>s=\frac{b-c}{b'-c'}=\frac{e-f}{e'-f'}</math>, and <math>t=\frac{c-d}{c'-d'}=\frac{f-a}{f'-a'}</math>. But then <math>0\ne a-b+d-e=r(a'-b'+d'-e')</math>, etc., so the non-parallel condition "transfers" directly from <math>P</math> to <math>P'</math> and | Construct a "phantom hexagon" <math>P'=A'B'C'D'E'F'</math> as follows: let <math>A'C'E'</math> be a triangle with <math>\angle{A'C'E'}=\angle{F}</math>, <math>\angle{C'E'A'}=\angle{B}</math>, and <math>\angle{E'A'C'}=\angle{F}</math> (this is possible since <math>\angle{B}+\angle{D}+\angle{F}=180^\circ</math> by the angle conditions), and reflect <math>A',C',E'</math> over its sides to get points <math>D',F',B'</math>, respectively. By rotation and reflection if necessary, we assume <math>A'B'\parallel AB</math> and <math>P',P</math> have the same orientation (clockwise or counterclockwise), i.e. <math>\frac{b-a}{b'-a'}\in\mathbb{R}^+</math>. It's easy to verify that <math>\angle{X'}=\angle{X}</math> for <math>X\in\{A,B,C,D,E,F\}</math> and opposite sides of <math>P'</math> have equal lengths. As the corresponding sides of <math>P</math> and <math>P'</math> must then be parallel, there exist positive reals <math>r,s,t</math> such that <math>r=\frac{a-b}{a'-b'}=\frac{d-e}{d'-e'}</math>, <math>s=\frac{b-c}{b'-c'}=\frac{e-f}{e'-f'}</math>, and <math>t=\frac{c-d}{c'-d'}=\frac{f-a}{f'-a'}</math>. But then <math>0\ne a-b+d-e=r(a'-b'+d'-e')</math>, etc., so the non-parallel condition "transfers" directly from <math>P</math> to <math>P'</math> and |
Latest revision as of 12:07, 31 August 2023
In hexagon , which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy
,
, and
. Furthermore
,
, and
. Prove that diagonals
,
, and
are concurrent.
Solutions
Solution 1
Let ,
, and
,
,
,
. Define the vectors:
Clearly,
.
Let intersect
at
. Note that
. Define the points
and
on lines
and
respectively so that
and
. Then
. As
is isosceles with
, the base angles are both
. Thus,
. Similarly,
and
.
Next we will find the angles between ,
, and
. As
, the angle between the vectors
and
is
. Similarly, the angle between
and
is
. Since the angle between
and
is
, the angle between
and
is
. Similarly, the angle between
and
is
, and the angle between
and
is
.
And since , we can arrange the three vectors to form a triangle, so the triangle with sides of lengths
,
, and
has opposite angles of
,
, and
, respectively. So by the law of sines:
and the triangle with sides of length
,
, and
has corresponding angles of
,
, and
. It follows by SAS congruency that this triangle is congruent to
,
, and
, so
,
, and
, and
,
, and
are the reflections of the vertices of triangle
about the sides. So
,
, and
concur at the orthocenter of triangle
.
Solution 2
We work in the complex plane, where lowercase letters denote their corresponding point's poition. Let denote hexagon
. Since
, the condition
is equivalent to
.
Construct a "phantom hexagon" as follows: let
be a triangle with
,
, and
(this is possible since
by the angle conditions), and reflect
over its sides to get points
, respectively. By rotation and reflection if necessary, we assume
and
have the same orientation (clockwise or counterclockwise), i.e.
. It's easy to verify that
for
and opposite sides of
have equal lengths. As the corresponding sides of
and
must then be parallel, there exist positive reals
such that
,
, and
. But then
, etc., so the non-parallel condition "transfers" directly from
to
and
If
, then
must be similar to
and the conclusion is obvious.
Otherwise, since and
, we must have
and
. Now let
,
,
be the feet of the altitudes in
; by the non-parallel condition in
,
are pairwise distinct. But
, whence
are three distinct collinear points, which is clearly impossible. (The points can only be collinear when
is a right triangle, but in this case two of
must coincide.)
Alternatively (for the previous paragraph), WLOG assume that is the unit circle, and use the fact that
, etc. to get simple expressions for
and
.
Solution 3
We work in the complex plane to give (essentially) a complete characterization when the parallel condition is relaxed.
WLOG assume are on the unit circle. It suffices to show that
uniquely determine
, since we know that if we let
be the reflection of
over
,
be the reflection of
over
, and
be the reflection of
over
, then
satisfies the problem conditions. (*)
It's easy to see with the given conditions that
Note that
so plugging into the third equation we have
Simplifying, this becomes
Of course, we can also "conjugate" this equation -- a nice way to do this is to note that if
then
whence
If
, then eliminating
, we get
The first case corresponds to (*) (since
uniquely determine
and
), the second corresponds to
(or equivalently, since
,
), and by symmetry, the third corresponds to
.
Otherwise, if , then we easily find
from the first of the two equations in
(we actually don't need this, but it tells us that the locus of working
is a line through the origin). It's easy to compute
and
, so
, and we're done.
Comment. It appears that taking the unit circle is nicer than, say
or
the unit circle (which may not even be reasonably tractable).
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
See Also
2011 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.