Difference between revisions of "User:Ddk001"
m |
(→User Counts) |
||
Line 33: | Line 33: | ||
==User Counts== | ==User Counts== | ||
+ | |||
==<font color="black" style="font-family: ITC Avant Garde Gothic Std, Verdana"><div style="margin-left:10px">User Count</div></font>== | ==<font color="black" style="font-family: ITC Avant Garde Gothic Std, Verdana"><div style="margin-left:10px">User Count</div></font>== | ||
<div style="margin-left: 10px; margin-bottom:10px"><font color="black">If this is your first time visiting this page, edit it by incrementing the user count below by one.</font></div> | <div style="margin-left: 10px; margin-bottom:10px"><font color="black">If this is your first time visiting this page, edit it by incrementing the user count below by one.</font></div> | ||
<center><font size="100px">0</font></center> | <center><font size="100px">0</font></center> | ||
</div> | </div> |
Revision as of 19:34, 1 January 2024
Problems (I made it, not copied)
See if you can solve these:
1. There is one and only one perfect square in the form
Find that perfect square.
2. Suppose there is complex values and
that satisfy
Find .
3. Suppose
Find the remainder when is divided by 1000.
4. Suppose is a
-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are
roots, say
. Suppose all integers
ranging from
to
satisfies
. Also, suppose that
for an integer . If
is the minimum possible value of
.
Find the number of factors of the prime in
.
5. (Much harder) is an isosceles triangle where
. Let the circumcircle of
be
. Then, there is a point
and a point
on circle
such that
and
trisects
and
, and point
lies on minor arc
. Point
is chosen on segment
such that
is one of the altitudes of
. Ray
intersects
at point
(not
) and is extended past
to point
, and
. Point
is also on
and
. Let the perpendicular bisector of
and
intersect at
. Let
be a point such that
is both equal to
(in length) and is perpendicular to
and
is on the same side of
as
. Let
be the reflection of point
over line
. There exist a circle
centered at
and tangent to
at point
.
intersect
at
. Now suppose
intersects
at one distinct point, and
, and
are collinear. If
, then
can be expressed in the form
, where
and
are not divisible by the squares of any prime. Find
.