Difference between revisions of "2024 AIME II Problems/Problem 14"
(Created page with ":D") |
|||
| Line 1: | Line 1: | ||
| − | : | + | ==Problem== |
| + | Let \(b\ge 2\) be an integer. Call a positive integer \(n\) \(b\text-\textit{eautiful}\) if it has exactly two digits when expressed in base \(b\) and these two digits sum to \(\sqrt n\). For example, \(81\) is \(13\text-\textit{eautiful}\) because \(81 = \underline{6} \ \underline{3}_{13} \) and \(6 + 3 = \sqrt{81}\). Find the least integer \(b\ge 2\) for which there are more than ten \(b\text-\textit{eautiful}\) integers. | ||
| + | |||
| + | ==See also== | ||
| + | {{AIME box|year=2024|num-b=13|num-a=15|n=II}} | ||
| + | |||
| + | [[Category:Intermediate Algebra Problems]] | ||
| + | {{MAA Notice}} | ||
Revision as of 09:30, 9 February 2024
Problem
Let \(b\ge 2\) be an integer. Call a positive integer \(n\) \(b\text-\textit{eautiful}\) if it has exactly two digits when expressed in base \(b\) and these two digits sum to \(\sqrt n\). For example, \(81\) is \(13\text-\textit{eautiful}\) because \(81 = \underline{6} \ \underline{3}_{13} \) and \(6 + 3 = \sqrt{81}\). Find the least integer \(b\ge 2\) for which there are more than ten \(b\text-\textit{eautiful}\) integers.
See also
| 2024 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.