Difference between revisions of "2023 AIME I Problems/Problem 15"
m (→Solution 2) |
m (→Solution: Fixed a typo) |
||
Line 14: | Line 14: | ||
<cmath>1000>p=a^2+b^2\geq 12b^2+b^2=13b^2</cmath>so <math>b^2<81</math>, and <math>b<9</math>. If <math>b=8</math>, then <math>16\sqrt 3\leq a\leq 32</math>. Note that <math>\gcd(a,b)=1</math>, and <math>a\not\equiv b\pmod 2</math>, so <math>a=29</math> or <math>31</math>. However, then <math>5\mid a^2+b^2</math>, absurd. | <cmath>1000>p=a^2+b^2\geq 12b^2+b^2=13b^2</cmath>so <math>b^2<81</math>, and <math>b<9</math>. If <math>b=8</math>, then <math>16\sqrt 3\leq a\leq 32</math>. Note that <math>\gcd(a,b)=1</math>, and <math>a\not\equiv b\pmod 2</math>, so <math>a=29</math> or <math>31</math>. However, then <math>5\mid a^2+b^2</math>, absurd. | ||
− | If <math>b=7</math>, by similar logic, we have that <math>14\sqrt 3 <a< 28</math>, so <math> | + | If <math>b=7</math>, by similar logic, we have that <math>14\sqrt 3 <a< 28</math>, so <math>a=26</math>. However, once again, <math>5\mid a^2+b^2</math>. If <math>b=6</math>, by the same logic, <math>12\sqrt3<a<24</math>, so <math>a=23</math>, where we run into the same problem. Thus <math>b\leq 5</math> indeed. |
If <math>b=5</math>, note that | If <math>b=5</math>, note that | ||
<cmath>(a+5)(a^2+25-20a)<a^2+25\implies a<20</cmath>We note that <math>p=5^2+18^2=349</math> works. Thus, we just need to make sure that if <math>b\leq 4</math>, <math>a\leq 18</math>. But this is easy, as | <cmath>(a+5)(a^2+25-20a)<a^2+25\implies a<20</cmath>We note that <math>p=5^2+18^2=349</math> works. Thus, we just need to make sure that if <math>b\leq 4</math>, <math>a\leq 18</math>. But this is easy, as | ||
<cmath>p>(a+b)(a^2+b^2-4ab)\geq (4+18)(4^2+18^2-4\cdot 4\cdot 18)>1000</cmath>absurd. Thus, the answer is <math>\boxed{349}</math>. | <cmath>p>(a+b)(a^2+b^2-4ab)\geq (4+18)(4^2+18^2-4\cdot 4\cdot 18)>1000</cmath>absurd. Thus, the answer is <math>\boxed{349}</math>. | ||
− | |||
==Solution 2== | ==Solution 2== |
Revision as of 17:02, 18 January 2025
Contents
Problem
Find the largest prime number for which there exists a complex number
satisfying
- the real and imaginary part of
are both integers;
and
- there exists a triangle whose three side lengths are
the real part of
and the imaginary part of
Solution
Assume that . Then,
Note that by the Triangle Inequality,
Thus, we know
Without loss of generality, assume
(as otherwise, consider
). If
, then
`Thus, this means
or
. Also note that the roots of
are
, so thus if
,
Note that
so
, and
. If
, then
. Note that
, and
, so
or
. However, then
, absurd.
If , by similar logic, we have that
, so
. However, once again,
. If
, by the same logic,
, so
, where we run into the same problem. Thus
indeed.
If , note that
We note that
works. Thus, we just need to make sure that if
,
. But this is easy, as
absurd. Thus, the answer is
.
Solution 2
Denote . Thus,
.
Thus,
Because ,
,
are three sides of a triangle, we have
and
.
Thus,
Because ,
,
are three sides of a triangle, we have the following triangle inequalities:
We notice that , and
,
, and
form a right triangle. Thus,
.
Because
,
.
Therefore, (3) holds.
Conditions (4) and (5) can be written in the joint form as
We have
and
.
Thus, (5) can be written as
Therefore, we need to jointly solve (1), (2), (6).
From (1) and (2), we have either , or
.
In (6), by symmetry, without loss of generality, we assume
.
Thus, (1) and (2) are reduced to
Let . Plugging this into (6), we get
Because is a prime,
and
are relatively prime.
Therefore, we can use (7), (8), , and
and
are relatively prime to solve the problem.
To facilitate efficient search, we apply the following criteria:
To satisfy (7) and , we have
.
In the outer layer, we search for
in a decreasing order.
In the inner layer, for each given
, we search for
.
Given
, we search for
in the range
.
We can prove that for
, there is no feasible
.
The proof is as follows.
For , to satisfy
, we have
.
Thus,
.
Thus, the R.H.S. of (8) has the following upper bound
Hence, to satisfy (8), a necessary condition is
However, this cannot be satisfied for .
Therefore, there is no feasible solution for
.
Therefore, we only need to consider
.
We eliminate that is not relatively prime to
.
We use the following criteria to quickly eliminate that make
a composite number.
- For
, we eliminate
satisfying
.
- For
(resp.
), we eliminate
satisfying
(resp.
).
\item For the remaining , check whether (8) and the condition that
is prime are both satisfied.
The first feasible solution is and
.
Thus,
.
\item For the remaining search, given , we only search for
.
Following the above search criteria, we find the final answer as and
.
Thus, the largest prime
is
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~MathProblemSolvingSkills.com
Animated Video Solution
~Star League (https://starleague.us)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.