Difference between revisions of "2025 AIME II Problems/Problem 12"
(→Solution 1) |
|||
Line 18: | Line 18: | ||
~Bluesoul | ~Bluesoul | ||
+ | |||
+ | <math>\forall</math> 2 <math>\le</math> i <math>\le</math> 10, cos\angle <math>A_{i}<cmath>A_{1}</cmath>A_{i+1}</math>=<math>\frac{12}{13} </math>\\ | ||
+ | So sin\angle <math>A_{i}<cmath>A_{1}</cmath>A_{i+1}</math>=<math>\frac{5}{13} </math>\\ | ||
+ | Since the area of each triangle is 1,\\ | ||
+ | <math>\frac{1}{2} </math>\times<cmath>A_{1}</cmath>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>\times sin</math>\angle A_{i}<cmath>A_{1}</cmath>A_{i+1}<math>=1\\ | ||
+ | </math>\Rightarrow<math> </math>A_{1}<math></math>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>= </math>\frac{26}{5} <math>\\ | ||
+ | So </math>A_{1}<math></math>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>=</math>A_{1}<math></math>A_{i+1}<math>\times</math>A_{1}<math></math>A_{i+2}<math>\\ | ||
+ | This means </math>A_{1}<math></math>A_{i}<math>=A_{1}</math><math>A_{i+2}</math>\\ | ||
+ | In <math>\triangle A_{1}<cmath>A_{i}</cmath>A_{i+1}</math> and <math>\triangle A_{1}<cmath>A_{i+2}</cmath>A_{i+1}</math>,\\ | ||
+ | they share one of the same side and the angles on vertex <math>A_{1}</math> are the same | ||
+ | <math>A_{1}</math><math>A_{i}</math>= <math>A_{1}</math><math>A_{i=2}</math>\\ | ||
+ | So they are congruent \\ | ||
+ | This means <math>\forall</math> 2 <math>\le</math> i <math>\le</math> 9 <math>A_{i}</math><math>A_{i+1}</math>= <math>A_{i+1}</math><math>A_{i+2}</math>\\ | ||
+ | Perimeter = <math>A_{1}</math><math>A_{2}</math>+<math>\sum_{i=2}^{10}A_{i}</math><math>A_{i+1}</math>+<math>A_{11}</math><math>A_{1}</math>=20\\ | ||
+ | Then <math>A_{1}</math><math>A_{2}</math>+<math>A_{11}</math><math>A_{1}</math>+9<math>A_{2}</math><math>A_{3}</math>=20\\ | ||
+ | Let us set <math>A_{1}</math><math>A_{2}</math>=a <math>A_{11}</math><math>A_{1}</math>=b and <math>A_{2}</math><math>A_{3}</math>=c\\ | ||
+ | Then a+b+9c=20\\ | ||
+ | Now, we apply cosine law in <math>\triangle A_{1}<cmath>A_{2}</cmath>A_{3}</math>\\ | ||
+ | <math>A_{2}</math><math>A_{3}</math>^{2}=<math>A_{1}</math><math>A_{2}</math>^{2} +<math>A_{1}</math><math>A_{3}</math>^{3}-2<math>A_{1}</math><math>A_{2}</math>\times<math>A_{1}</math><math>A_{3}</math>cos\angle A_{2}<cmath>A_{1}</cmath>A_{3}<math>\\ | ||
+ | </math>\Rightarrow<math> c^{2}=a^{2}+b^{2}-2ab</math>\times\frac {12}{13} <math>\\ | ||
+ | Set </math>A_{1}<math></math>A_{2}<math>+</math>A_{11}<math></math>A_{1}<math>=t,\\ | ||
+ | then c^{2}=(a+b)^{2}-2ab-2ab</math>\times\frac {12}{13}=t^{2}-2\times\frac {26}{5}\times (1+\frac {12}{13})\\ | ||
+ | <math>\Rightarrow</math> c^{2}=t^{2}- 20 \\ | ||
+ | Since 9c=20-a-b=20-t\\ | ||
+ | Square both sides, giving 81c^{2}=400+t^{2}-40t\\ | ||
+ | <math>\Rightarrow</math> 81t^{2}-20\times81=400+t^{2}-40t\\ | ||
+ | <math>\Rightarrow</math> 80t^{2}+40t-20\times101\\ | ||
+ | <math>\Rightarrow</math> 80t^{2}+40t-20\times101\\ | ||
+ | <math>\Rightarrow</math> 4t^{2}+2t-101\\ | ||
+ | Soving it, we get t=\frac{9\sqrt{5}-1 }{4} \\ | ||
+ | So m+n+p+q=1+4+5+9=19 is the correct answer |
Revision as of 01:44, 14 February 2025
Problem
Let be a non-convex
-gon such that
• The area of is
for each
,
•
for each
,
• The perimeter of
is
.
If can be expressed as
for positive integers
with
squarefree and
, find
.
Solution 1
Since are the same, we have have
and
, since
is the same for all the
, so
are the same for all
, set them be
Now we have
Solve the system of equations we could get ,
~Bluesoul
2
i
10, cos\angle
=
\\
So sin\angle
=
\\
Since the area of each triangle is 1,\\
\times
A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
\angle A_{i}
A_{i+1}$=1\$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow$$ (Error compiling LaTeX. Unknown error_msg)A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
\frac{26}{5}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+2}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
\\
In
and
,\\
they share one of the same side and the angles on vertex
are the same
=
\\
So they are congruent \\
This means
2
i
9
=
\\
Perimeter =
+
+
=20\\
Then
+
+9
=20\\
Let us set
=a
=b and
=c\\
Then a+b+9c=20\\
Now, we apply cosine law in
\\
^{2}=
^{2} +
^{3}-2
\times
cos\angle A_{2}
A_{3}$\$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow
\times\frac {12}{13}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{2}
A_{11}$$ (Error compiling LaTeX. Unknown error_msg)A_{1}
\times\frac {12}{13}=t^{2}-2\times\frac {26}{5}\times (1+\frac {12}{13})\\
c^{2}=t^{2}- 20 \\
Since 9c=20-a-b=20-t\\
Square both sides, giving 81c^{2}=400+t^{2}-40t\\
81t^{2}-20\times81=400+t^{2}-40t\\
80t^{2}+40t-20\times101\\
80t^{2}+40t-20\times101\\
4t^{2}+2t-101\\
Soving it, we get t=\frac{9\sqrt{5}-1 }{4} \\
So m+n+p+q=1+4+5+9=19 is the correct answer