Difference between revisions of "2018 AMC 8 Problems/Problem 2"
m (→Solution) |
(→Solution) |
||
Line 13: | Line 13: | ||
Using telescoping, most of the terms cancel out diagonally. We are left with <math>\frac{7}{1}</math> which is equivalent to <math>7</math>. Thus, the answer would be <math>\boxed{\textbf{(D) }7}</math>. | Using telescoping, most of the terms cancel out diagonally. We are left with <math>\frac{7}{1}</math> which is equivalent to <math>7</math>. Thus, the answer would be <math>\boxed{\textbf{(D) }7}</math>. | ||
− | + | Also, you can also make the fractions to <math>\frac{7!}{6!}</math>, which also yields <math>\boxed{\textbf{(D)}7}</math> | |
== Video Solution (CRITICAL THINKING!!!)== | == Video Solution (CRITICAL THINKING!!!)== |
Revision as of 08:41, 11 March 2025
Contents
Problem
What is the value of the product
Solution
By adding up the numbers in each of the parentheses, we get:
.
Using telescoping, most of the terms cancel out diagonally. We are left with which is equivalent to
. Thus, the answer would be
.
Also, you can also make the fractions to , which also yields
Video Solution (CRITICAL THINKING!!!)
~Education, the Study of Everything
Video Solution
~savannahsolver
Video Solution by OmegaLearn
https://youtu.be/TkZvMa30Juo?t=3213
~ pi_is_3.14
See also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.