Difference between revisions of "2024 AMC 10A Problems/Problem 20"
MRENTHUSIASM (talk | contribs) (→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | Point <math>X</math> lies outside regular pentagon <math>ABCDE</math> so that <math>\triangle BXE</math> is an equilateral triangle, as shown below. What is the degree measure of acute angle <math>\angle CXD</math>? | |
− | + | <asy> | |
+ | import graph; size(7cm); | ||
+ | real labelscalefactor = 0.75; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -1.089556028373145, xmax = 2.738320502950249, ymin = -1.3143096399343266, ymax = 1.2691431521185288; /* image dimensions */ | ||
+ | pen qqwuqq = rgb(0,0.39215686274509803,0); | ||
− | * | + | filldraw(arc((1.9562952014676112,0),0.25,168,192)--(1.9562952014676112,0)--cycle, mediumgrey); |
+ | /* draw figures */ | ||
+ | draw((-0.8090169943749473,0.5877852522924731)--(0.30901699437494745,0.9510565162951535)); | ||
+ | draw((0.30901699437494745,0.9510565162951535)--(1,0)); | ||
+ | draw((1,0)--(0.3090169943749473,-0.9510565162951536)); | ||
+ | draw((0.3090169943749473,-0.9510565162951536)--(-0.8090169943749475,-0.587785252292473)); | ||
+ | draw((-0.8090169943749475,-0.587785252292473)--(-0.8090169943749473,0.5877852522924731)); | ||
+ | draw((0.30901699437494745,0.9510565162951535)--(0.3090169943749473,-0.9510565162951536)); | ||
+ | draw((0.3090169943749473,-0.9510565162951536)--(1.9562952014676112,0)); | ||
+ | draw((1.9562952014676112,0)--(0.30901699437494745,0.9510565162951535)); | ||
+ | draw((-0.8090169943749473,0.5877852522924731)--(1.9562952014676112,0), dashed); | ||
+ | draw((1.9562952014676112,0)--(-0.8090169943749475,-0.587785252292473), dashed); | ||
+ | /* dots and labels */ | ||
+ | dot((1,0),linewidth(4pt) + dotstyle); | ||
+ | label("$A$", (1.013592864312142,0), E * labelscalefactor); | ||
+ | dot((0.30901699437494745,0.9510565162951535),linewidth(4pt) + dotstyle); | ||
+ | label("$B$", (0.26,1), NE * labelscalefactor); | ||
+ | dot((-0.8090169943749473,0.5877852522924731),linewidth(4pt) + dotstyle); | ||
+ | label("$C$", (-0.82,0.64), NW * 0.25); | ||
+ | dot((-0.8090169943749475,-0.587785252292473),linewidth(4pt) + dotstyle); | ||
+ | label("$D$", (-0.82,-0.64), SW * 0.25); | ||
+ | dot((0.3090169943749473,-0.9510565162951536),linewidth(4pt) + dotstyle); | ||
+ | label("$E$", (0.26,-1), SE * labelscalefactor); | ||
+ | dot((1.9562952014676112,0),linewidth(4pt) + dotstyle); | ||
+ | label("$X$", (1.9705619971429902, 0), E * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | </asy> | ||
− | + | <math>\textbf{(A)}~18^{\circ}\qquad\textbf{(B)}~19.5^{\circ}\qquad\textbf{(C)}~21^{\circ}\qquad\textbf{(D)}~22.5^{\circ}\qquad\textbf{(E)}~24^{\circ}</math> | |
− | <math>\ | + | ==Solution== |
+ | Note that <math>EB = EC = EX</math>, so it follows that <math>E</math> is the circumcenter of <math>\triangle BCX</math>. Therefore, <math>\angle BXC = \tfrac{\angle BEC}{2} = 18^{\circ}</math>, so by symmetry <cmath>\angle CXD = \angle BXE - 2 \angle BXC = 60^{\circ} - 2 \cdot 18^{\circ} = \boxed{\textbf{(E)}~24^{\circ}}.</cmath> | ||
− | + | ~ihatemath123 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ~ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== | ||
{{AMC10 box|year=2024|ab=A|num-b=19|num-a=21}} | {{AMC10 box|year=2024|ab=A|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:24, 20 March 2025
Problem
Point lies outside regular pentagon
so that
is an equilateral triangle, as shown below. What is the degree measure of acute angle
?
Solution
Note that , so it follows that
is the circumcenter of
. Therefore,
, so by symmetry
~ihatemath123
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.