Difference between revisions of "2024 AMC 12A Problems/Problem 6"
(Redirected page to 2024 AMC 10A Problems/Problem 7) (Tag: New redirect) |
(Removed redirect to 2024 AMC 10A Problems/Problem 7) (Tag: Removed redirect) |
||
| Line 1: | Line 1: | ||
| − | + | ==Problem== | |
| + | Equilateral triangle <math>ABC</math> is partitioned into six smaller equilateral triangles and one smaller regular hexagon, as shown below. If the regular hexagon has area <math>12</math>, what is the area of <math>\triangle ABC</math>? | ||
| + | |||
| + | <asy> | ||
| + | import graph; size(4.5cm); | ||
| + | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
| + | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
| + | pen dotstyle = black; /* point style */ | ||
| + | fill((-3.46, 6)--(-2.6, 6.5)--(-1.73, 6)--(-1.73, 5)--(-2.6, 4.5)--(-3.46, 5)--cycle, lightgrey); | ||
| + | /* draw figures */ | ||
| + | draw((-3.4641016151377544,6)--(-4.330127018922193,5.5)); | ||
| + | draw((-4.330127018922193,5.5)--(-3.4641016151377544,5)); | ||
| + | draw((-3.4641016151377544,5)--(-3.4641016151377544,6)); | ||
| + | draw((-3.4641016151377544,5)--(-2.598076211353316,4.5)); | ||
| + | draw((-2.598076211353316,4.5)--(-1.7320508075688772,5)); | ||
| + | draw((-1.7320508075688772,5)--(-1.7320508075688772,6)); | ||
| + | draw((-1.7320508075688772,6)--(-2.598076211353316,6.5)); | ||
| + | draw((-2.598076211353316,6.5)--(-3.4641016151377544,6)); | ||
| + | draw((-4.330127018922193,5.5)--(-4.330127018922193,3.5)); | ||
| + | draw((-4.330127018922193,3.5)--(-2.598076211353316,4.5)); | ||
| + | draw((-1.7320508075688772,5)--(-1.7320508075688772,2)); | ||
| + | draw((-1.7320508075688772,2)--(-4.330127018922193,3.5)); | ||
| + | draw((-1.7320508075688772,6)--(1.7320508075688772,4)); | ||
| + | draw((1.7320508075688772,4)--(-1.7320508075688772,2)); | ||
| + | draw((-4.330127018922193,5.5)--(-4.330127018922193,7.5)); | ||
| + | draw((-4.330127018922193,7.5)--(-2.598076211353316,6.5)); | ||
| + | draw((-4.330127018922193,3.5)--(-4.330127018922193,0.5)); | ||
| + | draw((-4.330127018922193,0.5)--(-1.7320508075688772,2)); | ||
| + | /* | ||
| + | dot((-3.4641016151377544,6),dotstyle); | ||
| + | dot((-4.330127018922193,5.5),dotstyle); | ||
| + | dot((-3.4641016151377544,5),dotstyle); | ||
| + | dot((-2.598076211353316,4.5),dotstyle); | ||
| + | dot((-1.7320508075688772,5),dotstyle); | ||
| + | dot((-1.7320508075688772,6),dotstyle); | ||
| + | dot((-2.598076211353316,6.5),dotstyle); | ||
| + | dot((-4.330127018922193,3.5),dotstyle); | ||
| + | dot((-1.7320508075688772,2),dotstyle); | ||
| + | */ | ||
| + | dot((1.7320508075688772,4),dotstyle); | ||
| + | label("$A$", (1.8087225843418686,4), E); | ||
| + | dot((-4.330127018922193,7.5),dotstyle); | ||
| + | label("$B$", (-4.266904757984109,7.678590535956637), NW); | ||
| + | dot((-4.330127018922193,0.5),dotstyle); | ||
| + | label("$C$", (-4.266904757984109,0.6655806893860435), SW * 2.5); | ||
| + | label("$12$", (-2.6, 5.5)); | ||
| + | </asy> | ||
| + | |||
| + | <math>\textbf{(A)}~ 72 \qquad \textbf{(B)}~ 84 \qquad \textbf{(C)}~ 98 \qquad \textbf{(D)}~ 128 \qquad \textbf{(E)}~ 147</math> | ||
| + | |||
| + | ==Solution== | ||
| + | Let the side length of the regular hexagon be <math>s</math>. There are the equivalent of seven equilateral triangles of side length <math>s</math>, two of side <math>2s</math>, two of side <math>3s</math>, and one of side <math>4s</math>. Let <math>X</math> be the area of the entire figure so that <cmath>\frac{X}{12} = \frac{7s^{2} + 2(2s)^{2} + 2(3s)^{2} + (4s)^{2}}{6s^{2}} =\frac{7 + 8 + 18 + 16}{6} = \frac{49}{6}.</cmath> Solving gives <math>X = \boxed{\textbf{(C)}~98}</math>. | ||
| + | |||
| + | ==See also== | ||
| + | {{AMC12 box|year=2024|ab=A|num-b=5|num-a=7}} | ||
| + | {{MAA Notice}} | ||
Revision as of 20:41, 20 March 2025
Problem
Equilateral triangle
is partitioned into six smaller equilateral triangles and one smaller regular hexagon, as shown below. If the regular hexagon has area
, what is the area of
?
Solution
Let the side length of the regular hexagon be
. There are the equivalent of seven equilateral triangles of side length
, two of side
, two of side
, and one of side
. Let
be the area of the entire figure so that
Solving gives
.
See also
| 2024 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 5 |
Followed by Problem 7 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.