|
(Tags: New redirect, Undo) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect[[2024 AMC 10A Problems/Problem 23]] |
− | Let <math>f(x)</math> be a nonzero continuous function such that <cmath>f\left(\sqrt{x^{2} + y^{2}}\right) = f(x)f(y)</cmath> for all real numbers <math>x</math> and <math>y</math>. If <math>f(2) \leq 2024</math>, then how many integers in the set <math>\{-20, -19, \cdots, 20\}</math> could be the value of <math>f(1)</math>?
| |
− | | |
− | <math>\textbf{(A)}~6\qquad\textbf{(B)}~7\qquad\textbf{(C)}~12\qquad\textbf{(D)}~13\qquad\textbf{(E)}~16</math>
| |
− | | |
− | ==Solution==
| |
− | First, we observe that <math>f(x)</math> must be an even function because <math>f\left(\sqrt{x^{2} + y^{2}}\right) = f(-x)f(y) = f(x)f(y) and f(y) \neq 0</math>. We see that <math>f(x) = f(\lvert x \rvert) = f\left(\sqrt{\tfrac{x^{2}}{2} + \tfrac{x^{2}}{2}}\right) = f\left(\tfrac{x}{\sqrt{2}}\right)^{2} \geq 0</math>. But since <math>f</math> is nonzero, <math>f(x) > 0</math>.
| |
− | | |
− | Consider <math>(x, y) = (1, 1)</math>, which gives <math>f\left(\sqrt{1^{2} + 1^{2}}\right) = f\left(\sqrt{2}\right) = f(1)^{2}</math>. Combining this with <math>(x, y) = \left(\sqrt{2}, \sqrt{2}\right)</math>, we have <math>f\left(\sqrt{\left(\sqrt{2}\right)^{2} + \left(\sqrt{2}\right)^{2}}\right) = f(2) = f\left(\sqrt{2}\right)^{2} = f(1)^{4}</math>.
| |
− | | |
− | Therefore, <math>f(2) = f(1)^{4} \leq 2024</math>, and the only possible values for <math>f(1)</math> are the positive integers less than <math>\sqrt[4]{2024}</math>. Note that <math>6^{4} = 1296 < 2024</math> but <math>7^{4} = 2401 > 2024</math>, so the answer is <math>\boxed{\textbf{(A)}~6}</math>.
| |
− | | |
− | ==See also==
| |
− | {{AMC12 box|year=2024|ab=A|num-b=16|num-a=18}}
| |
− | {{MAA Notice}}
| |