Difference between revisions of "2025 USAJMO Problems/Problem 4"

(Created page with "__TOC__ == Problem == Let <math>n</math> be a positive integer, and let <math>a_0,\,a_1,\dots,\,a_n</math> be nonnegative integers such that <math>a_0\ge a_1\ge \dots\ge a_n....")
 
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
 
 +
By Vandermonde's,
 +
<cmath> \frac 12\binom{\sum a_i}2=\frac 12\left(\sum\binom{a_i}2+\sum_\text{cyc}a_ia_j\right)\ge\frac 12\sum ia_i^2\ge\sum i\binom{a_i}2, </cmath>with equality at <math>a_0=0,1</math> and <math>a_i=0</math> for <math>i>0.~\square</math>
 +
~rhydon516 (sol credits to leo)
  
 
==See Also==
 
==See Also==
 
{{USAJMO newbox|year=2025|num-b=3|num-a=5}}
 
{{USAJMO newbox|year=2025|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:06, 23 March 2025

Problem

Let $n$ be a positive integer, and let $a_0,\,a_1,\dots,\,a_n$ be nonnegative integers such that $a_0\ge a_1\ge \dots\ge a_n.$ Prove that\[\sum_{i=0}^n i\binom{a_i}{2}\le\frac{1}{2}\binom{a_0+a_1+\dots+a_n}{2}.\]Note: $\binom{k}{2}=\frac{k(k-1)}{2}$ for all nonnegative integers $k$.

Solution

By Vandermonde's, \[\frac 12\binom{\sum a_i}2=\frac 12\left(\sum\binom{a_i}2+\sum_\text{cyc}a_ia_j\right)\ge\frac 12\sum ia_i^2\ge\sum i\binom{a_i}2,\]with equality at $a_0=0,1$ and $a_i=0$ for $i>0.~\square$ ~rhydon516 (sol credits to leo)

See Also

2025 USAJMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAJMO Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png