Difference between revisions of "Lifting the Exponent Lemma"
m (Formatting) |
|||
Line 1: | Line 1: | ||
Lifting the exponent allows one to calculate the highest power of an integer that divides various numbers given certain information. It is extremely powerful and can sometimes "blow up" otherwise challenging problems. | Lifting the exponent allows one to calculate the highest power of an integer that divides various numbers given certain information. It is extremely powerful and can sometimes "blow up" otherwise challenging problems. | ||
− | Let <math>p</math> | + | Let <math>p</math> be a prime such that <math>p \nmid x</math> and <math>p \nmid y</math>. LTE comprises of the following identities (where <math>\nu_p(Z)</math> represents the largest factor of <math>p</math> that divides <math>Z</math>): |
− | <math>\nu_p(x^n-y^n)=\nu_p(x-y)+\nu_p(n)</math>, if <math>p|x-y</math>. | + | * When <math>p</math> is odd: |
− | + | ** <math>\nu_p(x^n-y^n)=\nu_p(x-y)+\nu_p(n)</math>, if <math>p|x-y</math>. | |
− | <math>\ | + | ** <math>\nu_p(x^n+y^n)=\nu_p(x+y)+\nu_p(n)</math>, if <math>p|x+y</math> and <math>n</math> is odd. |
− | + | ** <math>\nu_p(x^n+y^n)=0</math>, if <math>p|x+y</math> and <math>n</math> is even. | |
− | <math>\nu_2(x^n-y^n)=\nu_2(x-y)+\nu_2(x+y)+\nu_2(n)-1</math>, if <math>2|x-y</math> and <math>n</math> is even. | + | * When <math>p=2</math>: |
− | + | ** <math>\nu_2(x^n-y^n)=\nu_2(x-y)+\nu_2(x+y)+\nu_2(n)-1</math>, if <math>2|x-y</math> and <math>n</math> is even. | |
− | <math>\ | + | ** <math>\nu_2(x^n-y^n)=\nu(x-y)</math> if <math>2|x-y</math> and <math>n</math> is odd. |
− | + | ** Corollaries: | |
− | <math>\nu_2(x^n+y^n)=1</math>, if <math>2|x+y</math> and <math>n</math> is even. | + | *** <math>\nu_2(x^n-y^n)=\nu_2(x-y)+\nu_2(n),</math> if <math>4|x-y</math>. |
− | + | *** <math>\nu_2(x^n+y^n)=1</math>, if <math>2|x+y</math> and <math>n</math> is even. | |
− | <math>\nu_2(x^n+y^n)=\ | + | *** <math>\nu_2(x^n+y^n)=\nu_2(x+y)</math>, if <math>2|x+y</math> and <math>n</math> is odd. |
== External Links == | == External Links == |
Revision as of 02:22, 26 March 2025
Lifting the exponent allows one to calculate the highest power of an integer that divides various numbers given certain information. It is extremely powerful and can sometimes "blow up" otherwise challenging problems.
Let be a prime such that
and
. LTE comprises of the following identities (where
represents the largest factor of
that divides
):
- When
is odd:
, if
.
, if
and
is odd.
, if
and
is even.
- When
:
, if
and
is even.
if
and
is odd.
- Corollaries:
if
.
, if
and
is even.
, if
and
is odd.
External Links
This article is a stub. Help us out by expanding it.