Difference between revisions of "1999 CEMC Gauss (Grade 7) Problems"

(Created page with "= Part A: Each correct answer is worth 5 points = == Problem 1 == <math>\text{(A)}\ \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\ \qquad \text{(E)}\ </math> [[1...")
 
(Page is under construction)
Line 2: Line 2:
  
 
== Problem 1 ==
 
== Problem 1 ==
 +
<math>1999 - 999 + 99</math> equals
  
<math>\text{(A)}\  \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\ \qquad \text{(E)}\ </math>
+
<math>\text{(A)}\ 901 \qquad \text{(B)}\ 1099 \qquad \text{(C)}\ 199 \qquad \text{(D)}\ 99 \qquad \text{(E)}\ </math>
  
[[1998 CEMC Gauss (Grade 7) Problems/Problem 1|Solution]]
+
[[1999 CEMC Gauss (Grade 7) Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
The integer <math>287</math> is exactly divisible by
  
<math>\text{(A)}\ \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\ \qquad \text{(E)}\ </math>
+
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 6 </math>
  
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 2|Solution]]
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
Susan wants to place <math>35.5</math> kg of sugar in small bags. If each bag holds <math>0.5</math> kg, how many bags are needed?
  
<math>\text{(A)}\ \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\ \qquad \text{(E)}\ </math>
+
<math>\text{(A)}\ 36 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 53 \qquad \text{(D)}\ 70 \qquad \text{(E)}\ 71 </math>
  
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 3|Solution]]
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
<math>1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}</math> is equal to
  
<math>\text{(A)}\ \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\ \qquad \text{(E)}\ </math>
+
<math>\text{(A)}\ frac{15}{8} \qquad \text{(B)}\ 1\frac{3}{14} \qquad \text{(C)}\ \frac{11}{8} \qquad \text{(D)}\ 1\frac{3}{4} \qquad \text{(E)}\ frac{7}{8} </math>
  
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 4|Solution]]
 
[[1999 CEMC Gauss (Grade 7) Problems/Problem 4|Solution]]

Revision as of 21:25, 14 April 2025

Part A: Each correct answer is worth 5 points

Problem 1

$1999 - 999 + 99$ equals

$\text{(A)}\ 901  \qquad \text{(B)}\ 1099 \qquad \text{(C)}\ 199 \qquad \text{(D)}\ 99 \qquad \text{(E)}$

Solution

Problem 2

The integer $287$ is exactly divisible by

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 6$

Solution

Problem 3

Susan wants to place $35.5$ kg of sugar in small bags. If each bag holds $0.5$ kg, how many bags are needed?

$\text{(A)}\ 36 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 53 \qquad \text{(D)}\ 70 \qquad \text{(E)}\ 71$

Solution

Problem 4

$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ is equal to

$\text{(A)}\ frac{15}{8} \qquad \text{(B)}\ 1\frac{3}{14} \qquad \text{(C)}\ \frac{11}{8} \qquad \text{(D)}\ 1\frac{3}{4} \qquad \text{(E)}\ frac{7}{8}$

Solution

Problem 5

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 6

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 7

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 8

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 9

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 10

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Part B: Each correct answer is worth 6 points

Problem 11

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 12

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 13

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 14

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 15

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 16

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 17

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 18

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 19

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 20

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Part C: Each correct answer is worth 8 points

Problem 21

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 22

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 23

$\text{(A)}\  \qquad \text{(B)}\ \qquad \text{(C)}\ \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 24

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

Problem 25

$\text{(A)}\  \qquad \text{(B)}\  \qquad \text{(C)}\  \qquad \text{(D)}\  \qquad \text{(E)}$

Solution

See also

1999 CEMC Gauss (Grade 7) (ProblemsAnswer KeyResources)
Preceded by
1998 CEMC Gauss (Grade 7)
Followed by
2000 CEMC Gauss (Grade 7)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CEMC Gauss (Grade 7)