Difference between revisions of "2021 WSMO Accuracy Round Problems/Problem 7"
Line 12: | Line 12: | ||
Thus, | Thus, | ||
\begin{align*} | \begin{align*} | ||
− | 2^n+3^n\equiv&\text{ }5\pmod{10}\tag{for n\equiv1,3\pmod{4}}\\ | + | 2^n+3^n\equiv&\text{ }5\pmod{10}\tag{for <math>n\equiv1,3\pmod{4}</math>}\\ |
− | 2^n+3^n\equiv&\text{ }3\pmod{10}\tag{for n\equiv2\pmod{4}}\\ | + | 2^n+3^n\equiv&\text{ }3\pmod{10}\tag{for <math>n\equiv2\pmod{4}</math>}\\ |
− | 2^n+3^n\equiv&\text{ }7\pmod{10}\tag{for n\equiv0\pmod{4}}\\ | + | 2^n+3^n\equiv&\text{ }7\pmod{10}\tag{for <math>n\equiv0\pmod{4}</math>}\\ |
\end{align*} <cmath> | \end{align*} <cmath> | ||
This means that | This means that |
Revision as of 15:29, 2 May 2025
Problem
Find the value of where
is the remainder when
is divided by 10.
Solution 1
From Fermat's Little Theorem, we find that is periodic in cycles of 4. This means that
for all
Now, we will compute the first 4 values of
\begin{align*}
2^1+3^1\equiv2+3\equiv&\text{ }5\pmod{10}\\
2^2+3^2\equiv4+9\equiv13\equiv&\text{ }3\pmod{10}\\
2^3+3^3\equiv8+27\equiv35\equiv&\text{ }5\pmod{10}\\
2^4+3^4\equiv16+81\equiv97\equiv&\text{ }7\pmod{10}\\
\end{align*}
Thus,
\begin{align*}
2^n+3^n\equiv&\text{ }5\pmod{10}\tag{for
}\\
2^n+3^n\equiv&\text{ }3\pmod{10}\tag{for
}\\
2^n+3^n\equiv&\text{ }7\pmod{10}\tag{for
}\\
\end{align*}
~pinkpig
Solution 2
We will begin by examining and
:
and
From this, we can note that:
We can simplify our sum as follows:
Note that :
~BigKahuna227