Difference between revisions of "2024 SSMO Team Round Problems/Problem 11"

(Created page with "==Problem== Let <math>S</math> denote the set of positive divisors of <math>5400.</math> Let <cmath>S_i = \{d \mid d \in S, \, d \equiv i \Mod4\}</cmath> and let <math>s_i</m...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Let <math>S</math> denote the set of positive divisors of <math>5400.</math> Let <cmath>S_i = \{d \mid d \in S, \, d \equiv i \Mod4\}</cmath> and let <math>s_i</math> denote the sum of all elements of <math>S_i.</math> Find the value of <cmath>s_0^2+s_1^2+s_2^2+s_3^2-2s_0s_2-2s_1s_3.</cmath>
+
Let <math>S</math> denote the set of positive divisors of <math>5400.</math> Let <cmath>S_i = \{d \mid d \in S, \, d \equiv i \pmod4\}</cmath> and let <math>s_i</math> denote the sum of all elements of <math>S_i.</math> Find the value of <cmath>s_0^2+s_1^2+s_2^2+s_3^2-2s_0s_2-2s_1s_3.</cmath>
  
 
==Solution==
 
==Solution==

Latest revision as of 15:45, 2 May 2025

Problem

Let $S$ denote the set of positive divisors of $5400.$ Let \[S_i = \{d \mid d \in S, \, d \equiv i \pmod4\}\] and let $s_i$ denote the sum of all elements of $S_i.$ Find the value of \[s_0^2+s_1^2+s_2^2+s_3^2-2s_0s_2-2s_1s_3.\]

Solution