Difference between revisions of "2022 SSMO Team Round Problems/Problem 9"
(Created page with "==Problem== Given real numbers <math>a,b,x,y</math> such that <align*> a^2+b^2&=1,\\ x^2+y^2&=1,\\ abxy-\frac{1}{8}&=b^2y^2, </align*> find the sum of all distinct values of <...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Given real numbers <math>a,b,x,y</math> such that | + | Given real numbers <math>a,b,x,y</math> such that |
+ | \begin{align*} | ||
+ | a^2+b^2&=1,\\ | ||
+ | x^2+y^2&=1,\text{and}\\ | ||
+ | abxy-\frac{1}{8}&=b^2y^2, | ||
+ | \end{align*} | ||
+ | find the sum of all distinct values of <math>(a+b+x+y)^2</math>. | ||
==Solution== | ==Solution== |
Latest revision as of 19:16, 2 May 2025
Problem
Given real numbers such that
\begin{align*}
a^2+b^2&=1,\\
x^2+y^2&=1,\text{and}\\
abxy-\frac{1}{8}&=b^2y^2,
\end{align*}
find the sum of all distinct values of
.