Difference between revisions of "2023 SSMO Relay Round 1 Problems/Problem 3"

(Created page with "==Problem== Let <math>T=</math> TNYWR. Find the number of solutions to the equation <cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath> such <math>0 \le x \le \pi</math> ==Solut...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>T=</math> TNYWR. Find the number of solutions to the equation  
+
Let <math>T=TNYWR</math>. Find the number of solutions to the equation  
 
<cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath>
 
<cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath>
 
such <math>0 \le x \le \pi</math>
 
such <math>0 \le x \le \pi</math>
  
 
==Solution==
 
==Solution==

Latest revision as of 19:19, 2 May 2025

Problem

Let $T=TNYWR$. Find the number of solutions to the equation \[\sec^{N} (Nx) - \tan^{N}(Nx) = 1\] such $0 \le x \le \pi$

Solution