Difference between revisions of "2023 SSMO Relay Round 1 Problems/Problem 2"

(Created page with "==Problem== Let <math>T=</math> TNYWR. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>T=</math> TNYWR. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</cmath>
+
Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</cmath>
  
 
==Solution==
 
==Solution==

Latest revision as of 19:20, 2 May 2025

Problem

Let $T=TNYWR$. Let $a_0 = 3, a_1 = 1, a_2 = N$, and let $a_n = a_{n-1} - \frac{a_{n-3}}{8}$. Find \[\sum_{i=0}^\infty a_i.\]

Solution