Difference between revisions of "2022 SSMO Relay Round 2 Problems/Problem 3"

(Created page with "==Problem== Let <math>T =</math> TNYWR. Let <math>a+b = \lfloor \sqrt{T} \rfloor</math>. If <math>a^5 + b^5 = 15</math>, then <math>ab</math> has two possible values. The abso...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>T =</math> TNYWR. Let <math>a+b = \lfloor \sqrt{T} \rfloor</math>. If <math>a^5 + b^5 = 15</math>, then <math>ab</math> has two possible values. The absolute difference of these values is <math>\frac{x\sqrt{y}}{z}</math>, where <math>x,y</math> and <math>z</math> are positive integers, <math>x</math> and <math>z</math> are relatively prime, and <math>y</math> is not divisible by the square of any prime. What is <math>x+y+z?</math>
+
Let <math>T =TNYWR</math>. Let <math>a+b = \lfloor \sqrt{T} \rfloor</math>. If <math>a^5 + b^5 = 15</math>, then <math>ab</math> has two possible values. The absolute difference of these values is <math>\frac{x\sqrt{y}}{z}</math>, where <math>x,y</math> and <math>z</math> are positive integers, <math>x</math> and <math>z</math> are relatively prime, and <math>y</math> is not divisible by the square of any prime. What is <math>x+y+z?</math>
  
 
==Solution==
 
==Solution==

Latest revision as of 19:23, 2 May 2025

Problem

Let $T =TNYWR$. Let $a+b = \lfloor \sqrt{T} \rfloor$. If $a^5 + b^5 = 15$, then $ab$ has two possible values. The absolute difference of these values is $\frac{x\sqrt{y}}{z}$, where $x,y$ and $z$ are positive integers, $x$ and $z$ are relatively prime, and $y$ is not divisible by the square of any prime. What is $x+y+z?$

Solution