Difference between revisions of "2022 SSMO Relay Round 3 Problems/Problem 2"
(Created page with "==Problem== Let <math>T=</math> TNYWR. In cyclic quadrilateral <math>ABCD,</math> <math>\angle{BAD}=60^{\circ},</math> and <math>BC=CD=T.</math> If <math>AB</math> is a positi...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>T=</math> | + | Let <math>T=TNYWR</math>. In cyclic quadrilateral <math>ABCD,</math> <math>\angle{BAD}=60^{\circ},</math> and <math>BC=CD=T.</math> If <math>AB</math> is a positive integer, find twice the median of all (not necessarily distinct) possible values of <math>AB</math>. |
==Solution== | ==Solution== |
Latest revision as of 19:24, 2 May 2025
Problem
Let . In cyclic quadrilateral
and
If
is a positive integer, find twice the median of all (not necessarily distinct) possible values of
.