Difference between revisions of "2022 SSMO Relay Round 3 Problems/Problem 2"

(Created page with "==Problem== Let <math>T=</math> TNYWR. In cyclic quadrilateral <math>ABCD,</math> <math>\angle{BAD}=60^{\circ},</math> and <math>BC=CD=T.</math> If <math>AB</math> is a positi...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>T=</math> TNYWR. In cyclic quadrilateral <math>ABCD,</math> <math>\angle{BAD}=60^{\circ},</math> and <math>BC=CD=T.</math> If <math>AB</math> is a positive integer, find twice the median of all (not necessarily distinct) possible values of <math>AB</math>.
+
Let <math>T=TNYWR</math>. In cyclic quadrilateral <math>ABCD,</math> <math>\angle{BAD}=60^{\circ},</math> and <math>BC=CD=T.</math> If <math>AB</math> is a positive integer, find twice the median of all (not necessarily distinct) possible values of <math>AB</math>.
  
 
==Solution==
 
==Solution==

Latest revision as of 19:24, 2 May 2025

Problem

Let $T=TNYWR$. In cyclic quadrilateral $ABCD,$ $\angle{BAD}=60^{\circ},$ and $BC=CD=T.$ If $AB$ is a positive integer, find twice the median of all (not necessarily distinct) possible values of $AB$.

Solution