Difference between revisions of "2023 SSMO Team Round Problems/Problem 13"

 
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Let <math>D(n)</math> denote the product of all divisors of <math>n</math> Let <math>P(i,j)</math> denote the set of all integers that are both a multiple of <math>i</math> and a factor of <math>j.</math> Let
 
Let <math>D(n)</math> denote the product of all divisors of <math>n</math> Let <math>P(i,j)</math> denote the set of all integers that are both a multiple of <math>i</math> and a factor of <math>j.</math> Let
\[
+
<cmath>
 
-F(a) = \sqrt{\left|\log_{10}\left(\frac{D(10^{a})}{\prod_{\omega\in P(10^2,10^{a+2})}\omega}\right)\right|}\text{ and }G(n) = \sqrt[n-1]{\prod_{i=2}^{n}10^{F(i)}}.
 
-F(a) = \sqrt{\left|\log_{10}\left(\frac{D(10^{a})}{\prod_{\omega\in P(10^2,10^{a+2})}\omega}\right)\right|}\text{ and }G(n) = \sqrt[n-1]{\prod_{i=2}^{n}10^{F(i)}}.
\]
+
</cmath>
 
Suppose <math>\sum_{k=2}^{\infty}G(k)</math> is <math>\frac{a+b\sqrt{c}}{d}</math>. Find the value of <math>a+b+c+d</math>.
 
Suppose <math>\sum_{k=2}^{\infty}G(k)</math> is <math>\frac{a+b\sqrt{c}}{d}</math>. Find the value of <math>a+b+c+d</math>.
  
 
==Solution==
 
==Solution==

Latest revision as of 19:26, 2 May 2025

Problem

Let $D(n)$ denote the product of all divisors of $n$ Let $P(i,j)$ denote the set of all integers that are both a multiple of $i$ and a factor of $j.$ Let \[-F(a) = \sqrt{\left|\log_{10}\left(\frac{D(10^{a})}{\prod_{\omega\in P(10^2,10^{a+2})}\omega}\right)\right|}\text{ and }G(n) = \sqrt[n-1]{\prod_{i=2}^{n}10^{F(i)}}.\] Suppose $\sum_{k=2}^{\infty}G(k)$ is $\frac{a+b\sqrt{c}}{d}$. Find the value of $a+b+c+d$.

Solution