Difference between revisions of "2025 AIME I Problems/Problem 2"
m (→Solution 2) |
|||
Line 37: | Line 37: | ||
Because of reflections, and various triangles having the same bases, we can conclude that <math>|AFNBCEM| = |ABC|</math>. Through the given lengths of <math>4-16-8</math> on the left and <math>13-52-26</math> on the right, we conclude that the lines through <math>\triangle ABC</math> are parallel, and the sides are in a <math>1:4:2</math> ratio. Because these lines are parallel, we can see that <math>ADF,~AEG,~ABC</math>, are similar, and from our earlier ratio, we can give the triangles side ratios of <math>1:5:7</math>, or area ratios of <math>1:25:49</math>. Quadrilateral <math>DEGF</math> corresponds to the <math>|AEG|-|ADF|</math>, which corresponds to the ratio <math>25-1=24</math>. Dividing <math>288</math> by <math>24</math>, we get <math>12</math>, and finally multiplying <math>12 \cdot 49</math> gives us our answer of <math>\boxed{588}</math> | Because of reflections, and various triangles having the same bases, we can conclude that <math>|AFNBCEM| = |ABC|</math>. Through the given lengths of <math>4-16-8</math> on the left and <math>13-52-26</math> on the right, we conclude that the lines through <math>\triangle ABC</math> are parallel, and the sides are in a <math>1:4:2</math> ratio. Because these lines are parallel, we can see that <math>ADF,~AEG,~ABC</math>, are similar, and from our earlier ratio, we can give the triangles side ratios of <math>1:5:7</math>, or area ratios of <math>1:25:49</math>. Quadrilateral <math>DEGF</math> corresponds to the <math>|AEG|-|ADF|</math>, which corresponds to the ratio <math>25-1=24</math>. Dividing <math>288</math> by <math>24</math>, we get <math>12</math>, and finally multiplying <math>12 \cdot 49</math> gives us our answer of <math>\boxed{588}</math> | ||
− | ~shreyan.chethan | + | ~shreyan.chethan, cleaned up by cweu001 |
==Video Solution 1 by SpreadTheMathLove== | ==Video Solution 1 by SpreadTheMathLove== |
Revision as of 10:45, 13 May 2025
Contents
Problem
On points
,
,
, and
lie in that order on side
with
,
, and
. Points
,
,
, and
lie in that order on side
with
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. Quadrilateral
has area
. Find the area of heptagon
.
Solution 1
Note that the triangles outside have the same height as the unshaded triangles in
. Since they have the same bases, the area of the heptagon is the same as the area of triangle
. Therefore, we need to calculate the area of
. Denote the length of
as
and the altitude of
to
as
. Since
,
and the altitude of
is
. The area
. The area of
is equal to
.
~alwaysgonnagiveyouup
Solution 2
Because of reflections, and various triangles having the same bases, we can conclude that . Through the given lengths of
on the left and
on the right, we conclude that the lines through
are parallel, and the sides are in a
ratio. Because these lines are parallel, we can see that
, are similar, and from our earlier ratio, we can give the triangles side ratios of
, or area ratios of
. Quadrilateral
corresponds to the
, which corresponds to the ratio
. Dividing
by
, we get
, and finally multiplying
gives us our answer of
~shreyan.chethan, cleaned up by cweu001
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=J-0BapU4Yuk
Video Solution(Fast! Easy!)
~MC
Video Solution by Mathletes Corner
https://www.youtube.com/watch?v=fVBk2vOusio&t=3s
~GP102
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.