Difference between revisions of "2017 AMC 12A Problems/Problem 21"

m (added note and used grammerly.)
(removed solution 2 because it was basically just a part of solution 1)
 
Line 32: Line 32:
  
 
with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math>
 
with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math>
 
==Solution 2(Potentially)==
 
Note: This solution is not rigorous because it might be impossible to make 2 and 5.
 
 
By the rational roots theorem, all integer roots must be factors of the constant. Initially, the number of factors the constant could have is 10. Therefore, you have 1, 2, 5, 10, and -1, -2, -5, -10. The coefficient could also be 0, so we add that to our count to get 9. So our answer is <math>{\textbf{(D)}}</math>
 
 
~CubiksRube
 
  
 
== Video Solution by Richard Rusczyk ==
 
== Video Solution by Richard Rusczyk ==

Latest revision as of 16:05, 28 May 2025

Problem

A set $S$ is constructed as follows. To begin, $S = \{0,10\}$. Repeatedly, as long as possible, if $x$ is an integer root of some polynomial $a_{n}x^n + a_{n-1}x^{n-1} + \dots + a_{1}x + a_0$ for some $n\geq{1}$, all of whose coefficients $a_i$ are elements of $S$, then $x$ is put into $S$. When no more elements can be added to $S$, how many elements does $S$ have?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 11$

Solution

At first, $S=\{0,10\}$.

\[\begin{tabular}{r c l c l} \(10x+10\) & has root & \(x=-1\) & so now & \(S=\{-1,0,10\}\) \\ \(-x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x+10\) & has root & \(x=1\) & so now & \(S=\{-1,0,1,10\}\) \\ \(x+10\) & has root & \(x=-10\) & so now & \(S=\{-10,-1,0,1,10\}\) \\ \(x^3+x-10\) & has root & \(x=2\) & so now & \(S=\{-10,-1,0,1,2,10\}\) \\ \(x+2\) & has root & \(x=-2\) & so now & \(S=\{-10,-2,-1,0,1,2,10\}\) \\ \(2x-10\) & has root & \(x=5\) & so now & \(S=\{-10,-2,-1,0,1,2,5,10\}\) \\ \(x+5\) & has root & \(x=-5\) & so now & \(S=\{-10,-5,-2,-1,0,1,2,5,10\}\) \end{tabular}\]

At this point, no more elements can be added to $S$. To see this, let

\begin{align*} a_{n}x^n + a_{n-1}x^{n-1} + ... + a_{2}x^2 + a_{1}x + a_0 &= 0 \\ x(a_{n}x^{n-1} + a_{n-1}x^{n-2} + ... + a_{2}x + a_{1}) + a_0 &= 0 \\ x(a_{n}x^{n-1} + a_{n-1}x^{n-2} + ... + a_{2}x + a_{1}) &= -a_0 \end{align*}

with each $a_i$ in $S$. $x$ is a factor of $a_0$, and $a_0$ is in $S$, so $x$ has to be a factor of some element in $S$. There are no such integers left, so there can be no additional elements. $\{-10,-5,-2,-1,0,1,2,5,10\}$ has $9$ elements $\to \boxed{\textbf{(D)}}$

Video Solution by Richard Rusczyk

https://www.youtube.com/watch?v=hSYSNBVPLhE&list=PLyhPcpM8aMvLZmuDnM-0vrFniLpo7Orbp&index=1

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png