GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2005 AMC 10A Problems"

m (Fixed typos and formatting in various problem statements)
m (Improved formatting of answer choices)
 
Line 3: Line 3:
 
While eating out, Mike and Joe each tipped their server <math>\$2</math>. Mike tipped <math>10\%</math> of his bill and Joe tipped <math>20\%</math> of his bill. What was the difference, in dollars, between their bills?  
 
While eating out, Mike and Joe each tipped their server <math>\$2</math>. Mike tipped <math>10\%</math> of his bill and Joe tipped <math>20\%</math> of his bill. What was the difference, in dollars, between their bills?  
  
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 20 </math>
+
<math>
 +
\textbf{(A) } 2\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 10\qquad \textbf{(E) } 20
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 1|Solution]]
 
[[2005 AMC 10A Problems/Problem 1|Solution]]
Line 14: Line 16:
 
What is the value of <math>\left(\left(1 \star 2\right) \star 3\right)</math>?
 
What is the value of <math>\left(\left(1 \star 2\right) \star 3\right)</math>?
  
<math> \mathrm{(A) \ } -\frac{2}{3}\qquad \mathrm{(B) \ } -\frac{1}{5}\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \text{This value is not defined.} </math>
+
<math>
 +
\textbf{(A) } -\frac{2}{3}\qquad \textbf{(B) } -\frac{1}{5}\qquad \textbf{(C) } 0\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \text{This value is not defined.}
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 2|Solution]]
 
[[2005 AMC 10A Problems/Problem 2|Solution]]
Line 21: Line 25:
 
The equations <math>2x + 7 = 3</math> and <math>bx - 10 = -2</math> have the same solution <math>x</math>. What is the value of <math>b</math>?  
 
The equations <math>2x + 7 = 3</math> and <math>bx - 10 = -2</math> have the same solution <math>x</math>. What is the value of <math>b</math>?  
  
<math> \mathrm{(A) \ } -8\qquad \mathrm{(B) \ } -4\qquad \mathrm{(C) \ } -2\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 8 </math>
+
<math>
 +
\textbf{(A) } -8\qquad \textbf{(B) } -4\qquad \textbf{(C) } -2\qquad \textbf{(D) } 4\qquad \textbf{(E) } 8
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 3|Solution]]
 
[[2005 AMC 10A Problems/Problem 3|Solution]]
Line 28: Line 34:
 
A rectangle with a diagonal of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle?  
 
A rectangle with a diagonal of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle?  
  
<math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math>
+
<math>
 +
\textbf{(A) } \frac{1}{4}x^2\qquad \textbf{(B) } \frac{2}{5}x^2\qquad \textbf{(C) } \frac{1}{2}x^2\qquad \textbf{(D) } x^2\qquad \textbf{(E) } \frac{3}{2}x^2
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 4|Solution]]
 
[[2005 AMC 10A Problems/Problem 4|Solution]]
Line 35: Line 43:
 
A store normally sells windows at <math>\$100</math> each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How many dollars will they save if they purchase the windows together rather than separately?
 
A store normally sells windows at <math>\$100</math> each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How many dollars will they save if they purchase the windows together rather than separately?
  
<math> \mathrm{(A) \ } 100\qquad \mathrm{(B) \ } 200\qquad \mathrm{(C) \ } 300\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 500 </math>
+
<math>
 +
\textbf{(A) } 100\qquad \textbf{(B) } 200\qquad \textbf{(C) } 300\qquad \textbf{(D) } 400\qquad \textbf{(E) } 500
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 5|Solution]]
 
[[2005 AMC 10A Problems/Problem 5|Solution]]
Line 42: Line 52:
 
The average (mean) of <math>20</math> numbers is <math>30</math>, and the average of <math>30</math> other numbers is <math>20</math>. What is the average of all <math>50</math> numbers?
 
The average (mean) of <math>20</math> numbers is <math>30</math>, and the average of <math>30</math> other numbers is <math>20</math>. What is the average of all <math>50</math> numbers?
  
<math> \mathrm{(A) \ } 23\qquad \mathrm{(B) \ } 24\qquad \mathrm{(C) \ } 25\qquad \mathrm{(D) \ } 26\qquad \mathrm{(E) \ } 27 </math>
+
<math>
 +
\textbf{(A) } 23\qquad \textbf{(B) } 24\qquad \textbf{(C) } 25\qquad \textbf{(D) } 26\qquad \textbf{(E) } 27
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 6|Solution]]
 
[[2005 AMC 10A Problems/Problem 6|Solution]]
Line 49: Line 61:
 
Josh and Mike live <math>13</math> miles apart. Yesterday Josh started to ride his bicycle toward Mike's house. A little later Mike started to ride his bicycle toward Josh's house. When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike's rate. How many miles had Mike ridden when they met?  
 
Josh and Mike live <math>13</math> miles apart. Yesterday Josh started to ride his bicycle toward Mike's house. A little later Mike started to ride his bicycle toward Josh's house. When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike's rate. How many miles had Mike ridden when they met?  
  
<math> \mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 8 </math>
+
<math>
 +
\textbf{(A) } 4\qquad \textbf{(B) } 5\qquad \textbf{(C) } 6\qquad \textbf{(D) } 7\qquad \textbf{(E) } 8
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 7|Solution]]
 
[[2005 AMC 10A Problems/Problem 7|Solution]]
Line 80: Line 94:
 
</asy>
 
</asy>
  
<math> \mathrm{(A)}\ 25\qquad\mathrm{(B)}\ 32\qquad\mathrm{(C)}\ 36\qquad\mathrm{(D)}\ 40\qquad\mathrm{(E)}\ 42 </math>
+
<math>
 +
\textbf{(A) } 25\qquad\textbf{(B) } 32\qquad\textbf{(C) } 36\qquad\textbf{(D) } 40\qquad\textbf{(E) } 42
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 8|Solution]]
 
[[2005 AMC 10A Problems/Problem 8|Solution]]
Line 87: Line 103:
 
Three tiles are marked <math>X</math> and two other tiles are marked <math>O</math>. The five tiles are randomly arranged in a row. What is the probability that the arrangement reads <math>XOXOX</math>?
 
Three tiles are marked <math>X</math> and two other tiles are marked <math>O</math>. The five tiles are randomly arranged in a row. What is the probability that the arrangement reads <math>XOXOX</math>?
  
<math> \mathrm{(A) \ } \frac{1}{12}\qquad \mathrm{(B) \ } \frac{1}{10}\qquad \mathrm{(C) \ } \frac{1}{6}\qquad \mathrm{(D) \ } \frac{1}{4}\qquad \mathrm{(E) \ } \frac{1}{3} </math>
+
<math>
 +
\textbf{(A) } \frac{1}{12}\qquad \textbf{(B) } \frac{1}{10}\qquad \textbf{(C) } \frac{1}{6}\qquad \textbf{(D) } \frac{1}{4}\qquad \textbf{(E) } \frac{1}{3}
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 9|Solution]]
 
[[2005 AMC 10A Problems/Problem 9|Solution]]
Line 94: Line 112:
 
There are two values of <math>a</math> for which the equation <math>4x^2 + ax + 8x + 9 = 0</math> has only one solution for <math>x</math>. What is the sum of those values of <math>a</math>?
 
There are two values of <math>a</math> for which the equation <math>4x^2 + ax + 8x + 9 = 0</math> has only one solution for <math>x</math>. What is the sum of those values of <math>a</math>?
  
<math> \mathrm{(A) \ } -16\qquad \mathrm{(B) \ } -8\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 20 </math>
+
<math>
 +
\textbf{(A) } -16\qquad \textbf{(B) } -8\qquad \textbf{(C) } 0\qquad \textbf{(D) } 8\qquad \textbf{(E) } 20
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 10|Solution]]
 
[[2005 AMC 10A Problems/Problem 10|Solution]]
Line 101: Line 121:
 
A wooden cube <math>n</math> units on a side is painted red on all six faces and then cut into <math>n^3</math> unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is <math>n</math>?
 
A wooden cube <math>n</math> units on a side is painted red on all six faces and then cut into <math>n^3</math> unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is <math>n</math>?
  
<math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 7 </math>
+
<math>
 +
\textbf{(A) } 3\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 6\qquad \textbf{(E) } 7
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 11|Solution]]
 
[[2005 AMC 10A Problems/Problem 11|Solution]]
Line 131: Line 153:
 
</asy>
 
</asy>
  
<math> \mathrm{(A) \ } \frac{1}{3}\pi+\frac{\sqrt{3}}{2}\qquad \mathrm{(B) \ } \frac{2}{3}\pi\qquad \mathrm{(C) \ } \frac{2}{3}\pi+\frac{\sqrt{3}}{4}\qquad \mathrm{(D) \ } \frac{2}{3}\pi+\frac{\sqrt{3}}{3}\qquad \mathrm{(E) \ } \frac{2}{3}\pi+\frac{\sqrt{3}}{2} </math>
+
<math>
 +
\textbf{(A) } \frac{1}{3}\pi+\frac{\sqrt{3}}{2}\qquad \textbf{(B) } \frac{2}{3}\pi\qquad \textbf{(C) } \frac{2}{3}\pi+\frac{\sqrt{3}}{4}\qquad \textbf{(D) } \frac{2}{3}\pi+\frac{\sqrt{3}}{3}\qquad \textbf{(E) } \frac{2}{3}\pi+\frac{\sqrt{3}}{2}
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 12|Solution]]
 
[[2005 AMC 10A Problems/Problem 12|Solution]]
Line 140: Line 164:
 
<cmath>\left(130n\right)^{50} > n^{100} > 2^{200} \ \text{?}</cmath>
 
<cmath>\left(130n\right)^{50} > n^{100} > 2^{200} \ \text{?}</cmath>
  
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 7\qquad \mathrm{(C) \ } 12\qquad \mathrm{(D) \ } 65\qquad \mathrm{(E) \ } 125 </math>
+
<math>
 +
\textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 13|Solution]]
 
[[2005 AMC 10A Problems/Problem 13|Solution]]
Line 147: Line 173:
 
How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits?  
 
How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits?  
  
<math> \mathrm{(A) \ } 41\qquad \mathrm{(B) \ } 42\qquad \mathrm{(C) \ } 43\qquad \mathrm{(D) \ } 44\qquad \mathrm{(E) \ } 45 </math>
+
<math>
 +
\textbf{(A) } 41\qquad \textbf{(B) } 42\qquad \textbf{(C) } 43\qquad \textbf{(D) } 44\qquad \textbf{(E) } 45
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 14|Solution]]
 
[[2005 AMC 10A Problems/Problem 14|Solution]]
Line 154: Line 182:
 
How many positive cubes divide <math>3! \cdot 5! \cdot 7!</math>?
 
How many positive cubes divide <math>3! \cdot 5! \cdot 7!</math>?
  
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6 </math>
+
<math>
 +
\textbf{(A) } 2\qquad \textbf{(B) } 3\qquad \textbf{(C) } 4\qquad \textbf{(D) } 5\qquad \textbf{(E) } 6
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 15|Solution]]
 
[[2005 AMC 10A Problems/Problem 15|Solution]]
Line 161: Line 191:
 
The sum of the digits of a two-digit number is subtracted from the number. The units digit of the result is <math>6</math>. How many two-digit numbers have this property?  
 
The sum of the digits of a two-digit number is subtracted from the number. The units digit of the result is <math>6</math>. How many two-digit numbers have this property?  
  
<math> \mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 7\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 19 </math>
+
<math>
 +
\textbf{(A) } 5\qquad \textbf{(B) } 7\qquad \textbf{(C) } 9\qquad \textbf{(D) } 10\qquad \textbf{(E) } 19
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 16|Solution]]
 
[[2005 AMC 10A Problems/Problem 16|Solution]]
Line 183: Line 215:
 
</asy>
 
</asy>
  
<math> \mathrm{(A) \ } 9\qquad \mathrm{(B) \ } 10\qquad \mathrm{(C) \ } 11\qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 13 </math>
+
<math>
 +
\textbf{(A) } 9\qquad \textbf{(B) } 10\qquad \textbf{(C) } 11\qquad \textbf{(D) } 12\qquad \textbf{(E) } 13
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 17|Solution]]
 
[[2005 AMC 10A Problems/Problem 17|Solution]]
Line 190: Line 224:
 
Team <math>A</math> and team <math>B</math> play a series. The first team to win three games wins the series. Each team is equally likely to win each game, there are no ties, and the outcomes of the individual games are independent. If team <math>B</math> wins the second game and team <math>A</math> wins the series, what is the probability that team <math>B</math> wins the first game?  
 
Team <math>A</math> and team <math>B</math> play a series. The first team to win three games wins the series. Each team is equally likely to win each game, there are no ties, and the outcomes of the individual games are independent. If team <math>B</math> wins the second game and team <math>A</math> wins the series, what is the probability that team <math>B</math> wins the first game?  
  
<math> \mathrm{(A) \ } \frac{1}{5}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3} </math>
+
<math>
 +
\textbf{(A) } \frac{1}{5}\qquad \textbf{(B) } \frac{1}{4}\qquad \textbf{(C) } \frac{1}{3}\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \frac{2}{3}
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 18|Solution]]
 
[[2005 AMC 10A Problems/Problem 18|Solution]]
Line 214: Line 250:
 
draw(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle);</asy>
 
draw(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle);</asy>
  
<math> \mathrm{(A)}\ 1\qquad\mathrm{(B)}\ \sqrt{2}\qquad\mathrm{(C)}\ \frac{3}{2}\qquad\mathrm{(D)}\ \sqrt{2}+\frac{1}{2}\qquad\mathrm{(E)}\ 2 </math>
+
<math>
 +
\textbf{(A) } 1\qquad\textbf{(B) } \sqrt{2}\qquad\textbf{(C) } \frac{3}{2}\qquad\textbf{(D) } \sqrt{2}+\frac{1}{2}\qquad\textbf{(E) } 2
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 19|Solution]]
 
[[2005 AMC 10A Problems/Problem 19|Solution]]
Line 221: Line 259:
 
An equiangular octagon has four sides of length <math>1</math> and four sides of length <math>\sqrt{2}/2</math>, arranged so that no two consecutive sides have the same length.  What is the area of the octagon?
 
An equiangular octagon has four sides of length <math>1</math> and four sides of length <math>\sqrt{2}/2</math>, arranged so that no two consecutive sides have the same length.  What is the area of the octagon?
  
<math> \mathrm{(A) \ } \frac{7}{2}\qquad \mathrm{(B) \ } \frac{7\sqrt{2}}{2}\qquad \mathrm{(C) \ } \frac{5+4\sqrt{2}}{2}\qquad \mathrm{(D) \ } \frac{4+5\sqrt{2}}{2}\qquad \mathrm{(E) \ } 7 </math>
+
<math>
 +
\textbf{(A) } \frac{7}{2}\qquad \textbf{(B) } \frac{7\sqrt{2}}{2}\qquad \textbf{(C) } \frac{5+4\sqrt{2}}{2}\qquad \textbf{(D) } \frac{4+5\sqrt{2}}{2}\qquad \textbf{(E) } 7
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 20|Solution]]
 
[[2005 AMC 10A Problems/Problem 20|Solution]]
Line 228: Line 268:
 
For how many positive integers <math>n</math> does <math>1+2+\dotsb+n</math> evenly divide <math>6n</math>?  
 
For how many positive integers <math>n</math> does <math>1+2+\dotsb+n</math> evenly divide <math>6n</math>?  
  
<math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 11 </math>
+
<math>
 +
\textbf{(A) } 3\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 9\qquad \textbf{(E) } 11
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 21|Solution]]
 
[[2005 AMC 10A Problems/Problem 21|Solution]]
Line 235: Line 277:
 
Let <math>S</math> be the set of the <math>2005</math> smallest positive multiples of <math>4</math>, and let <math>T</math> be the set of the <math>2005</math> smallest positive multiples of <math>6</math>. How many elements are common to <math>S</math> and <math>T</math>?
 
Let <math>S</math> be the set of the <math>2005</math> smallest positive multiples of <math>4</math>, and let <math>T</math> be the set of the <math>2005</math> smallest positive multiples of <math>6</math>. How many elements are common to <math>S</math> and <math>T</math>?
  
<math> \mathrm{(A) \ } 166\qquad \mathrm{(B) \ } 333\qquad \mathrm{(C) \ } 500\qquad \mathrm{(D) \ } 668\qquad \mathrm{(E) \ } 1001 </math>
+
<math>
 +
\textbf{(A) } 166\qquad \textbf{(B) } 333\qquad \textbf{(C) } 500\qquad \textbf{(D) } 668\qquad \textbf{(E) } 1001
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 22|Solution]]
 
[[2005 AMC 10A Problems/Problem 22|Solution]]
Line 262: Line 306:
 
draw(rightanglemark(D,C,B,2));</asy>
 
draw(rightanglemark(D,C,B,2));</asy>
  
<math> \mathrm{(A) \ } \frac{1}{6} \qquad \mathrm{(B) \ } \frac{1}{4} \qquad \mathrm{(C) \ } \frac{1}{3} \qquad \mathrm{(D) \ } \frac{1}{2} \qquad \mathrm{(E) \ } \frac{2}{3} </math>
+
<math>
 +
\textbf{(A) } \frac{1}{6} \qquad \textbf{(B) } \frac{1}{4} \qquad \textbf{(C) } \frac{1}{3} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 23|Solution]]
 
[[2005 AMC 10A Problems/Problem 23|Solution]]
Line 269: Line 315:
 
For each positive integer <math>m > 1</math>, let <math>P(m)</math> denote the greatest prime factor of <math>m</math>. For how many positive integers <math>n</math> is it true that both <math>P(n) = \sqrt{n}</math> and <math>P(n+48) = \sqrt{n+48}</math>?
 
For each positive integer <math>m > 1</math>, let <math>P(m)</math> denote the greatest prime factor of <math>m</math>. For how many positive integers <math>n</math> is it true that both <math>P(n) = \sqrt{n}</math> and <math>P(n+48) = \sqrt{n+48}</math>?
  
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5 </math>
+
<math>
 +
\textbf{(A) } 0\qquad \textbf{(B) } 1\qquad \textbf{(C) } 3\qquad \textbf{(D) } 4\qquad \textbf{(E) } 5
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 24|Solution]]
 
[[2005 AMC 10A Problems/Problem 24|Solution]]
Line 276: Line 324:
 
In <math>\triangle ABC</math> we have <math>AB = 25</math>, <math>BC = 39</math>, and <math>AC = 42</math>. Points <math>D</math> and <math>E</math> are on <math>\overline{AB}</math> and <math>\overline{AC}</math> respectively, with <math>AD = 19</math> and <math>AE = 14</math>. What is the ratio of the area of triangle <math>ADE</math> to the area of the quadrilateral <math>BCED</math>?
 
In <math>\triangle ABC</math> we have <math>AB = 25</math>, <math>BC = 39</math>, and <math>AC = 42</math>. Points <math>D</math> and <math>E</math> are on <math>\overline{AB}</math> and <math>\overline{AC}</math> respectively, with <math>AD = 19</math> and <math>AE = 14</math>. What is the ratio of the area of triangle <math>ADE</math> to the area of the quadrilateral <math>BCED</math>?
  
<math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math>
+
<math>
 +
\textbf{(A) } \frac{266}{1521}\qquad \textbf{(B) } \frac{19}{75}\qquad \textbf{(C) } \frac{1}{3}\qquad \textbf{(D) } \frac{19}{56}\qquad \textbf{(E) } 1
 +
</math>
  
 
[[2005 AMC 10A Problems/Problem 25|Solution]]
 
[[2005 AMC 10A Problems/Problem 25|Solution]]

Latest revision as of 16:52, 1 July 2025

2005 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

While eating out, Mike and Joe each tipped their server $$2$. Mike tipped $10\%$ of his bill and Joe tipped $20\%$ of his bill. What was the difference, in dollars, between their bills?

$\textbf{(A) } 2\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 10\qquad \textbf{(E) } 20$

Solution

Problem 2

For each pair of real numbers $a \neq b$, define the operation $\star$ as

\[(a \star b) = \frac{a+b}{a-b}.\]

What is the value of $\left(\left(1 \star 2\right) \star 3\right)$?

$\textbf{(A) } -\frac{2}{3}\qquad \textbf{(B) } -\frac{1}{5}\qquad \textbf{(C) } 0\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \text{This value is not defined.}$

Solution

Problem 3

The equations $2x + 7 = 3$ and $bx - 10 = -2$ have the same solution $x$. What is the value of $b$?

$\textbf{(A) } -8\qquad \textbf{(B) } -4\qquad \textbf{(C) } -2\qquad \textbf{(D) } 4\qquad \textbf{(E) } 8$

Solution

Problem 4

A rectangle with a diagonal of length $x$ is twice as long as it is wide. What is the area of the rectangle?

$\textbf{(A) } \frac{1}{4}x^2\qquad \textbf{(B) } \frac{2}{5}x^2\qquad \textbf{(C) } \frac{1}{2}x^2\qquad \textbf{(D) } x^2\qquad \textbf{(E) } \frac{3}{2}x^2$

Solution

Problem 5

A store normally sells windows at $$100$ each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How many dollars will they save if they purchase the windows together rather than separately?

$\textbf{(A) } 100\qquad \textbf{(B) } 200\qquad \textbf{(C) } 300\qquad \textbf{(D) } 400\qquad \textbf{(E) } 500$

Solution

Problem 6

The average (mean) of $20$ numbers is $30$, and the average of $30$ other numbers is $20$. What is the average of all $50$ numbers?

$\textbf{(A) } 23\qquad \textbf{(B) } 24\qquad \textbf{(C) } 25\qquad \textbf{(D) } 26\qquad \textbf{(E) } 27$

Solution

Problem 7

Josh and Mike live $13$ miles apart. Yesterday Josh started to ride his bicycle toward Mike's house. A little later Mike started to ride his bicycle toward Josh's house. When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike's rate. How many miles had Mike ridden when they met?

$\textbf{(A) } 4\qquad \textbf{(B) } 5\qquad \textbf{(C) } 6\qquad \textbf{(D) } 7\qquad \textbf{(E) } 8$

Solution

Problem 8

In the figure, the length of side $AB$ of square $ABCD$ is $\sqrt{50}$, $E$ is between $B$ and $H$, and $BE = 1$. What is the area of the inner square $EFGH$?

[asy] unitsize(4cm); defaultpen(linewidth(.8pt)+fontsize(10pt));  pair D=(0,0), C=(1,0), B=(1,1), A=(0,1); pair F=intersectionpoints(Circle(D,2/sqrt(5)),Circle(A,1))[0]; pair G=foot(A,D,F), H=foot(B,A,G), E=foot(C,B,H);  draw(A--B--C--D--cycle); draw(D--F); draw(C--E); draw(B--H); draw(A--G);  label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,NNW); label("$F$",F,ENE); label("$G$",G,SSE); label("$H$",H,WSW); [/asy]

$\textbf{(A) } 25\qquad\textbf{(B) } 32\qquad\textbf{(C) } 36\qquad\textbf{(D) } 40\qquad\textbf{(E) } 42$

Solution

Problem 9

Three tiles are marked $X$ and two other tiles are marked $O$. The five tiles are randomly arranged in a row. What is the probability that the arrangement reads $XOXOX$?

$\textbf{(A) } \frac{1}{12}\qquad \textbf{(B) } \frac{1}{10}\qquad \textbf{(C) } \frac{1}{6}\qquad \textbf{(D) } \frac{1}{4}\qquad \textbf{(E) } \frac{1}{3}$

Solution

Problem 10

There are two values of $a$ for which the equation $4x^2 + ax + 8x + 9 = 0$ has only one solution for $x$. What is the sum of those values of $a$?

$\textbf{(A) } -16\qquad \textbf{(B) } -8\qquad \textbf{(C) } 0\qquad \textbf{(D) } 8\qquad \textbf{(E) } 20$

Solution

Problem 11

A wooden cube $n$ units on a side is painted red on all six faces and then cut into $n^3$ unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is $n$?

$\textbf{(A) } 3\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 6\qquad \textbf{(E) } 7$

Solution

Problem 12

The figure shown is called a trefoil and is constructed by drawing circular sectors about sides of the congruent equilateral triangles. What is the area of a trefoil whose horizontal base has length $2$?

[asy] unitsize(1.5cm); defaultpen(linewidth(.8pt)+fontsize(12pt));  pair O=(0,0), A=dir(0), B=dir(60), C=dir(120), D=dir(180); pair E=B+C;  draw(D--E--B--O--C--B--A,linetype("4 4")); draw(Arc(O,1,0,60),linewidth(1.2pt)); draw(Arc(O,1,120,180),linewidth(1.2pt)); draw(Arc(C,1,0,60),linewidth(1.2pt)); draw(Arc(B,1,120,180),linewidth(1.2pt)); draw(A--D,linewidth(1.2pt)); draw(O--dir(40),EndArrow(HookHead,4)); draw(O--dir(140),EndArrow(HookHead,4)); draw(C--C+dir(40),EndArrow(HookHead,4)); draw(B--B+dir(140),EndArrow(HookHead,4));  label("2",O,S); draw((0.1,-0.12)--(1,-0.12),EndArrow(HookHead,4),EndBar); draw((-0.1,-0.12)--(-1,-0.12),EndArrow(HookHead,4),EndBar); [/asy]

$\textbf{(A) } \frac{1}{3}\pi+\frac{\sqrt{3}}{2}\qquad \textbf{(B) } \frac{2}{3}\pi\qquad \textbf{(C) } \frac{2}{3}\pi+\frac{\sqrt{3}}{4}\qquad \textbf{(D) } \frac{2}{3}\pi+\frac{\sqrt{3}}{3}\qquad \textbf{(E) } \frac{2}{3}\pi+\frac{\sqrt{3}}{2}$

Solution

Problem 13

How many positive integers $n$ satisfy the following condition:

\[\left(130n\right)^{50} > n^{100} > 2^{200} \ \text{?}\]

$\textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125$

Solution

Problem 14

How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits?

$\textbf{(A) } 41\qquad \textbf{(B) } 42\qquad \textbf{(C) } 43\qquad \textbf{(D) } 44\qquad \textbf{(E) } 45$

Solution

Problem 15

How many positive cubes divide $3! \cdot 5! \cdot 7!$?

$\textbf{(A) } 2\qquad \textbf{(B) } 3\qquad \textbf{(C) } 4\qquad \textbf{(D) } 5\qquad \textbf{(E) } 6$

Solution

Problem 16

The sum of the digits of a two-digit number is subtracted from the number. The units digit of the result is $6$. How many two-digit numbers have this property?

$\textbf{(A) } 5\qquad \textbf{(B) } 7\qquad \textbf{(C) } 9\qquad \textbf{(D) } 10\qquad \textbf{(E) } 19$

Solution

Problem 17

In the five-sided star shown, the letters $A$, $B$, $C$, $D$, and $E$ are replaced by the numbers $3$, $5$, $6$, $7$, and $9$, although not necessarily in this order. The sums of the numbers at the ends of the line segments $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, $\overline{DE}$, and $\overline{EA}$ form an arithmetic sequence, although not necessarily in this order. What is the middle term of the arithmetic sequence?

[asy] size(150); defaultpen(linewidth(0.8)); string[] strng = {'A','D','B','E','C'}; pair A=dir(90),B=dir(306),C=dir(162),D=dir(18),E=dir(234); draw(A--B--C--D--E--cycle); for(int i=0;i<=4;i=i+1) { path circ=circle(dir(90-72*i),0.125); unfill(circ); draw(circ); label("$"+strng[i]+"$",dir(90-72*i)); } [/asy]

$\textbf{(A) } 9\qquad \textbf{(B) } 10\qquad \textbf{(C) } 11\qquad \textbf{(D) } 12\qquad \textbf{(E) } 13$

Solution

Problem 18

Team $A$ and team $B$ play a series. The first team to win three games wins the series. Each team is equally likely to win each game, there are no ties, and the outcomes of the individual games are independent. If team $B$ wins the second game and team $A$ wins the series, what is the probability that team $B$ wins the first game?

$\textbf{(A) } \frac{1}{5}\qquad \textbf{(B) } \frac{1}{4}\qquad \textbf{(C) } \frac{1}{3}\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \frac{2}{3}$

Solution

Problem 19

Three one-inch squares are placed with their bases on a line. The center square is lifted out and rotated $45^{\circ}$, as shown. Then it is centered and lowered into its original location until it touches both of the adjoining squares. How many inches is the point $B$ from the line on which the bases of the original squares were placed?

[asy] unitsize(1inch); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--((1/3) + 3*(1/2),0)); fill(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle, rgb(.7,.7,.7)); draw(((1/6),0)--((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6),(1/2))--cycle); draw(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle); draw(((1/6) + 1,0)--((1/6) + 1,(1/2))--((1/6) + (3/2),(1/2))--((1/6) + (3/2),0)--cycle); draw((2,0)--(2 + (1/3) + (3/2),0)); draw(((2/3) + (3/2),0)--((2/3) + 2,0)--((2/3) + 2,(1/2))--((2/3) + (3/2),(1/2))--cycle); draw(((2/3) + (5/2),0)--((2/3) + (5/2),(1/2))--((2/3) + 3,(1/2))--((2/3) + 3,0)--cycle); label("$B$",((1/6) + (1/2),(1/2)),NW); label("$B$",((2/3) + 2 + (1/4),(29/30)),NNE); draw(((1/6) + (1/2),(1/2)+0.05)..(1,.8)..((2/3) + 2 + (1/4)-.05,(29/30)),EndArrow(HookHead,3)); fill(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle, rgb(.7,.7,.7)); draw(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle);[/asy]

$\textbf{(A) } 1\qquad\textbf{(B) } \sqrt{2}\qquad\textbf{(C) } \frac{3}{2}\qquad\textbf{(D) } \sqrt{2}+\frac{1}{2}\qquad\textbf{(E) } 2$

Solution

Problem 20

An equiangular octagon has four sides of length $1$ and four sides of length $\sqrt{2}/2$, arranged so that no two consecutive sides have the same length. What is the area of the octagon?

$\textbf{(A) } \frac{7}{2}\qquad \textbf{(B) } \frac{7\sqrt{2}}{2}\qquad \textbf{(C) } \frac{5+4\sqrt{2}}{2}\qquad \textbf{(D) } \frac{4+5\sqrt{2}}{2}\qquad \textbf{(E) } 7$

Solution

Problem 21

For how many positive integers $n$ does $1+2+\dotsb+n$ evenly divide $6n$?

$\textbf{(A) } 3\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 9\qquad \textbf{(E) } 11$

Solution

Problem 22

Let $S$ be the set of the $2005$ smallest positive multiples of $4$, and let $T$ be the set of the $2005$ smallest positive multiples of $6$. How many elements are common to $S$ and $T$?

$\textbf{(A) } 166\qquad \textbf{(B) } 333\qquad \textbf{(C) } 500\qquad \textbf{(D) } 668\qquad \textbf{(E) } 1001$

Solution

Problem 23

Let $\overline{AB}$ be a diameter of a circle and $C$ be a point on $\overline{AB}$ with $2 \cdot AC = BC$. Let $D$ and $E$ be points on the circle such that $\overline{DC} \perp \overline{AB}$ and $\overline{DE}$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

[asy] unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y); draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",E,SSE); label("$B$",B,E); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); draw(rightanglemark(D,C,B,2));[/asy]

$\textbf{(A) } \frac{1}{6} \qquad \textbf{(B) } \frac{1}{4} \qquad \textbf{(C) } \frac{1}{3} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}$

Solution

Problem 24

For each positive integer $m > 1$, let $P(m)$ denote the greatest prime factor of $m$. For how many positive integers $n$ is it true that both $P(n) = \sqrt{n}$ and $P(n+48) = \sqrt{n+48}$?

$\textbf{(A) } 0\qquad \textbf{(B) } 1\qquad \textbf{(C) } 3\qquad \textbf{(D) } 4\qquad \textbf{(E) } 5$

Solution

Problem 25

In $\triangle ABC$ we have $AB = 25$, $BC = 39$, and $AC = 42$. Points $D$ and $E$ are on $\overline{AB}$ and $\overline{AC}$ respectively, with $AD = 19$ and $AE = 14$. What is the ratio of the area of triangle $ADE$ to the area of the quadrilateral $BCED$?

$\textbf{(A) } \frac{266}{1521}\qquad \textbf{(B) } \frac{19}{75}\qquad \textbf{(C) } \frac{1}{3}\qquad \textbf{(D) } \frac{19}{56}\qquad \textbf{(E) } 1$

Solution

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2004 AMC 10B Problems
Followed by
2005 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png