Difference between revisions of "2011 USAJMO Problems/Problem 5"
Rabbit11395 (talk | contribs) m (The original cyclic quadrilateral mentioned doesn't even have the point F, and also in the same original quadrilateral the P, O, M would be collinear) |
Jj empire10 (talk | contribs) |
||
Line 3: | Line 3: | ||
Points <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, <math>E</math> lie on a circle <math>\omega</math> and point <math>P</math> lies outside the circle. The given points are such that (i) lines <math>PB</math> and <math>PD</math> are tangent to <math>\omega</math>, (ii) <math>P</math>, <math>A</math>, <math>C</math> are collinear, and (iii) <math>\overline{DE} \parallel \overline{AC}</math>. Prove that <math>\overline{BE}</math> bisects <math>\overline{AC}</math>. | Points <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, <math>E</math> lie on a circle <math>\omega</math> and point <math>P</math> lies outside the circle. The given points are such that (i) lines <math>PB</math> and <math>PD</math> are tangent to <math>\omega</math>, (ii) <math>P</math>, <math>A</math>, <math>C</math> are collinear, and (iii) <math>\overline{DE} \parallel \overline{AC}</math>. Prove that <math>\overline{BE}</math> bisects <math>\overline{AC}</math>. | ||
− | == | + | == Video Solution (Fast and Clear) == |
− | https:// | + | https://youtu.be/Xmx3iv5c5GY?si=F7AluMuRm_DUSGli |
+ | ~ Pi Academy | ||
==Solution== | ==Solution== | ||
Line 93: | Line 94: | ||
<cmath>-1=(A,C;B,D)\stackrel{E}{=}(A,C;M,P_{\infty})</cmath> | <cmath>-1=(A,C;B,D)\stackrel{E}{=}(A,C;M,P_{\infty})</cmath> | ||
Where <math>P_{\infty}</math> is the point at infinity for parallel lines <math>\overline{DE}</math> and <math>\overline{AC}</math>. Thus, we get <math>\frac{MA}{MC}=-1</math>, and <math>M</math> is the midpoint of <math>AC</math>. ~novus677 | Where <math>P_{\infty}</math> is the point at infinity for parallel lines <math>\overline{DE}</math> and <math>\overline{AC}</math>. Thus, we get <math>\frac{MA}{MC}=-1</math>, and <math>M</math> is the midpoint of <math>AC</math>. ~novus677 | ||
+ | |||
+ | == The power of angle chasing=== | ||
+ | https://www.youtube.com/watch?v=Dn1IIx9Cnqw&list=PLqgsN351HEtHgi3Ax2oXJk_bEiROCvNF5 | ||
+ | |||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 14:36, 16 July 2025
Contents
Problem
Points ,
,
,
,
lie on a circle
and point
lies outside the circle. The given points are such that (i) lines
and
are tangent to
, (ii)
,
,
are collinear, and (iii)
. Prove that
bisects
.
Video Solution (Fast and Clear)
https://youtu.be/Xmx3iv5c5GY?si=F7AluMuRm_DUSGli ~ Pi Academy
Solution
Since , we have that
. But it is well known that
is a harmonic quadrilateral, thus
is a symmedian of triangle
, from which it follows that
is a median of
.
Solution 1
Connect segment PO, and name the interaction of PO and the circle as point M.
Since PB and PD are tangent to the circle, it's easy to see that M is the midpoint of arc BD.
∠ BOA = 1/2 arc AB + 1/2 arc CE
Since AC // DE, arc AD = arc CE,
thus, ∠ BOA = 1/2 arc AB + 1/2 arc AD = 1/2 arc BD = arc BM = ∠ BOM
Therefore, PBFO is cyclic, ∠ PFO = ∠ OBP = 90°, AF = AC (F is the interaction of BE and AC)
BE bisects AC, proof completed!
~ MVP Harry
Solution 2
Let be the center of the circle, and let
be the intersection of
and
. Let
be
and
be
.
,
,
Thus is a cyclic quadrilateral and
and so
is the midpoint of chord
.
~pandadude
Solution 3
This is the solution from EGMO Problem 1.43 page 242
Let be the center of the circle, and let
be the midpoint of
. Let
denote the circle with diameter
. Since
,
,
, and
all lie on
.
Since quadrilateral is cyclic,
. Triangles
and
are congruent, so
, so
. Because
and
are parallel,
lies on
(using Euclid's Parallel Postulate).
-Evan Chen (vEnhance)
Solution 4
Note that by Lemma 9.9 of EGMO, is a harmonic bundle. We project through
onto
,
Where
is the point at infinity for parallel lines
and
. Thus, we get
, and
is the midpoint of
. ~novus677
The power of angle chasing=
https://www.youtube.com/watch?v=Dn1IIx9Cnqw&list=PLqgsN351HEtHgi3Ax2oXJk_bEiROCvNF5
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.