Difference between revisions of "2025 IMO Problems/Problem 3"

 
Line 1: Line 1:
Let <math>\mathbb{N}</math> denote the set of positive integers. A function <math>f: \mathbb{N} \rightarrow \mathbb{N}</math> is said to be bonza if <math>f(a)</math> divides <math>b^{a} - f(b)^{f(a)}</math> for all positive integers <math>a</math> and <math>b</math>. Determine the smallest real constant <math>c</math> such that <math>f(n) \leq cn</math> for all bonza functions <math>f</math> and all positive integers <math>n</math>.
+
Let <math>\mathbb{N}</math> denote the set of positive integers. A function <math>f: \mathbb{N} \rightarrow \mathbb{N}</math> is said to be <i>bonza</i> if <center><math>f(a)</math> divides <math>b^{a} - f(b)^{f(a)}</math></center> for all positive integers <math>a</math> and <math>b</math>. Determine the smallest real constant <math>c</math> such that <math>f(n) \leq cn</math> for all bonza functions <math>f</math> and all positive integers <math>n</math>.
  
 
==Video solution==
 
==Video solution==
 
https://www.youtube.com/watch?v=vPqUTG4CW8w
 
https://www.youtube.com/watch?v=vPqUTG4CW8w
 +
 +
==See Also==
 +
* [[2025 IMO]]
 +
* [[IMO Problems and Solutions, with authors]]
 +
* [[Mathematics competitions resources]]
 +
{{IMO box|year=2025|num-b=2|num-a=4}}

Latest revision as of 19:52, 19 July 2025

Let $\mathbb{N}$ denote the set of positive integers. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be bonza if

$f(a)$ divides $b^{a} - f(b)^{f(a)}$

for all positive integers $a$ and $b$. Determine the smallest real constant $c$ such that $f(n) \leq cn$ for all bonza functions $f$ and all positive integers $n$.

Video solution

https://www.youtube.com/watch?v=vPqUTG4CW8w

See Also

2025 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions