Difference between revisions of "2025 IMO Problems/Problem 3"
Line 1: | Line 1: | ||
− | Let <math>\mathbb{N}</math> denote the set of positive integers. A function <math>f: \mathbb{N} \rightarrow \mathbb{N}</math> is said to be bonza if <math>f(a)</math> divides <math>b^{a} - f(b)^{f(a)}</math> for all positive integers <math>a</math> and <math>b</math>. Determine the smallest real constant <math>c</math> such that <math>f(n) \leq cn</math> for all bonza functions <math>f</math> and all positive integers <math>n</math>. | + | Let <math>\mathbb{N}</math> denote the set of positive integers. A function <math>f: \mathbb{N} \rightarrow \mathbb{N}</math> is said to be <i>bonza</i> if <center><math>f(a)</math> divides <math>b^{a} - f(b)^{f(a)}</math></center> for all positive integers <math>a</math> and <math>b</math>. Determine the smallest real constant <math>c</math> such that <math>f(n) \leq cn</math> for all bonza functions <math>f</math> and all positive integers <math>n</math>. |
==Video solution== | ==Video solution== | ||
https://www.youtube.com/watch?v=vPqUTG4CW8w | https://www.youtube.com/watch?v=vPqUTG4CW8w | ||
+ | |||
+ | ==See Also== | ||
+ | * [[2025 IMO]] | ||
+ | * [[IMO Problems and Solutions, with authors]] | ||
+ | * [[Mathematics competitions resources]] | ||
+ | {{IMO box|year=2025|num-b=2|num-a=4}} |
Latest revision as of 19:52, 19 July 2025
Let denote the set of positive integers. A function
is said to be bonza if


for all positive integers and
. Determine the smallest real constant
such that
for all bonza functions
and all positive integers
.
Video solution
https://www.youtube.com/watch?v=vPqUTG4CW8w
See Also
2025 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |