Difference between revisions of "2008 AMC 8 Problems/Problem 14"

(Solution)
(Problem)
 
Line 1: Line 1:
== Problem ==
 
Three <math>\text{A's}</math>, three <math>\text{B's}</math>, and three <math>\text{C's}</math> are placed in the nine spaces so that each row and column contains one of each letter. If <math>\text{A}</math> is placed in the upper left corner, how many arrangements are possible?
 
 
<asy>
 
size((80));
 
draw((0,0)--(9,0)--(9,9)--(0,9)--(0,0));
 
draw((3,0)--(3,9));
 
draw((6,0)--(6,9));
 
draw((0,3)--(9,3));
 
draw((0,6)--(9,6));
 
label("A", (1.5,7.5));
 
</asy>
 
 
<math> \textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6 </math>
 
 
 
== Solution ==
 
== Solution ==
 
There are <math>2</math> ways to place the remaining <math>\text{As}</math>, <math>2</math> ways to place the remaining <math>\text{Bs}</math>, and <math>1</math> way to place the remaining <math>\text{Cs}</math> for a total of <math>(2)(2)(1) = \boxed{\textbf{(C)}\ 4}</math>.
 
There are <math>2</math> ways to place the remaining <math>\text{As}</math>, <math>2</math> ways to place the remaining <math>\text{Bs}</math>, and <math>1</math> way to place the remaining <math>\text{Cs}</math> for a total of <math>(2)(2)(1) = \boxed{\textbf{(C)}\ 4}</math>.

Latest revision as of 04:10, 7 August 2025

Solution

There are $2$ ways to place the remaining $\text{As}$, $2$ ways to place the remaining $\text{Bs}$, and $1$ way to place the remaining $\text{Cs}$ for a total of $(2)(2)(1) = \boxed{\textbf{(C)}\ 4}$.

Video Solution

https://www.youtube.com/watch?v=8qzMymleTIg ~David

Video Solution 2

https://youtu.be/1m_c_iMvxKo Soo, DRMS, NM

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png