Difference between revisions of "1980 AHSME Problems/Problem 18"

m (Solution)
(Solution)
 
Line 6: Line 6:
  
 
== Solution ==
 
== Solution ==
<cmath>\log_b \sin x = a</cmath>
+
Since <math>\log_b \sin x = a</math>, <math>b^a=\sin x</math>.
<cmath>b^a=\sin x</cmath>
+
 
<cmath>\log_b \cos x=c</cmath>
+
Let <math>c = \log_b \cos x</math>. Then <math>b^c=\cos x</math>.
<cmath>b^c=\cos x</cmath>
+
 
 
Since <math>\sin^2x+\cos^2x=1</math>,  
 
Since <math>\sin^2x+\cos^2x=1</math>,  
 
<cmath>(b^c)^2+(b^a)^2=1</cmath>
 
<cmath>(b^c)^2+(b^a)^2=1</cmath>
Line 15: Line 15:
 
<cmath>b^{2c}=1-b^{2a}</cmath>
 
<cmath>b^{2c}=1-b^{2a}</cmath>
 
<cmath>\log_b (1-b^{2a}) = 2c</cmath>
 
<cmath>\log_b (1-b^{2a}) = 2c</cmath>
<cmath>c=\boxed{\text{(D)} \ \frac 12 \log_b(1-b^{2a})}</cmath>
+
<cmath>c=\boxed{(\textbf{D}) \ \frac 12 \log_b(1-b^{2a})}</cmath>
  
 
-aopspandy
 
-aopspandy

Latest revision as of 13:15, 15 August 2025

Problem

If $b>1$, $\sin x>0$, $\cos x>0$, and $\log_b \sin x = a$, then $\log_b \cos x$ equals

$\text{(A)} \ 2\log_b(1-b^{a/2}) ~~\text{(B)} \ \sqrt{1-a^2} ~~\text{(C)} \ b^{a^2} ~~\text{(D)} \ \frac 12 \log_b(1-b^{2a}) ~~\text{(E)} \ \text{none of these}$

Solution

Since $\log_b \sin x = a$, $b^a=\sin x$.

Let $c = \log_b \cos x$. Then $b^c=\cos x$.

Since $\sin^2x+\cos^2x=1$, \[(b^c)^2+(b^a)^2=1\] \[b^{2c}+b^{2a}=1\] \[b^{2c}=1-b^{2a}\] \[\log_b (1-b^{2a}) = 2c\] \[c=\boxed{(\textbf{D}) \ \frac 12 \log_b(1-b^{2a})}\]

-aopspandy

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png