Difference between revisions of "Descartes' Circle Formula"

m
m
Line 43: Line 43:
  
 
==Proof==
 
==Proof==
 +
<asy>
 +
size(200);
 +
defaultpen(linewidth(0.7));
 +
draw( Circle( (0,1), 0.8660) );
 +
draw( Circle( (0.8660, -0.5), 0.8660) );
 +
draw( Circle( (-0.8660,-0.5), 0.8660) );
 +
draw( Circle( (0,0), 0.1340) );
 +
draw( Circle( (0,0), 0.5) );
 +
draw( Circle( (-0.2321, 0.1340), 0.2321 ) );
 +
draw( Circle( (0.2321, 0.1340), 0.2321 ) );
 +
draw( Circle( (0, -0.2679), 0.2321 ) );
 +
</asy>
  
 
==Problems==
 
==Problems==

Revision as of 15:08, 22 August 2025

Descartes' Circle Formula is a relation held between four mutually tangent circles.

Definition of Curvature

When discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle A of radius $r_a$ is externally tangent to circle B of radius $r_b$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_a}$ and $\frac{1}{r_b}$.

If circle $A$ is internally tangent to circle $B$, however, a the curvature of circle $A$ is still $\frac{1}{r_a}$, while the curvature of circle B is $-\frac{1}{r_b}$, the opposite of the reciprocal of its radius.


[asy] size(200); defaultpen(linewidth(0.7)); draw(Circle(origin,0.5)); draw(Circle((1.5,0),1)); dot(origin^^(1.5,0)^^(0.5,0)); draw(origin--(1.5,0)); label("$1/2$", (0.25,0), N); label("$1$", (1,0), N); label("$A$", origin, SW); label("$B$", (1.5,0), SE); [/asy]

In the above diagram, the curvature of circle $A$ is $2$ while the curvature of circle $B$ is $1$.

[asy] size(150); defaultpen(linewidth(0.7)); draw(Circle((1.25,0),0.25)); draw(Circle((1.5,0),0.5)); dot((1,0)^^(1.5,0)^^(1.25,0)^^(2,0)); draw((1,0)--(2,0)); label("$1/2$", (1.125,0), N); label("$1$", (1.75,0), N); label("$A$", (1.25,0), SW); label("$B$", (1.5,0), SE); [/asy]

In the above diagram, the curvature of circle $A$ is still $2$ while the curvature of circle $B$ is $-1$.

Statement

When four circles $A, B, C,$ and $D$ are pairwise tangent, with respective curvatures $a, b, c,$ and $d$, then the following equation holds:

$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Proof

[asy] size(200); defaultpen(linewidth(0.7)); draw( Circle( (0,1), 0.8660) ); draw( Circle( (0.8660, -0.5), 0.8660) ); draw( Circle( (-0.8660,-0.5), 0.8660) ); draw( Circle( (0,0), 0.1340) ); draw( Circle( (0,0), 0.5) ); draw( Circle( (-0.2321, 0.1340), 0.2321 ) ); draw( Circle( (0.2321, 0.1340), 0.2321 ) ); draw( Circle( (0, -0.2679), 0.2321 ) ); [/asy]

Problems