Difference between revisions of "2023 SSMO Accuracy Round Problems/Problem 4"
(Created page with "==Problem== In square <math>ABCD,</math> point <math>E</math> is selected on diagonal <math>AC.</math> Let <math>F</math> be the intersection of the circumcircles of triangles...") |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | Note that by symmetry, <math>F</math> is the reflection of <math>E</math> over the perpendicular bisector of <math>CD</math>. Define coordinates <math>A = (10, 10)</math>, <math>B = (0, 10)</math>, <math>C = (0, 0)</math>, and <math>D = (10, 0)</math>. Since <math>EF = 6</math>, it follows that either <math>E</math> is <math>(8, 8)</math> or <math>(2, 2)</math>, so <math>F</math> is either <math>(2, 8)</math> or <math>(8, 2)</math>. The second case produces the larger solution of <cmath>\frac{1}{2} \cdot 10 \cdot 8 = \boxed{40}.</cmath> | ||
+ | |||
+ | <asy> | ||
+ | size(7cm); | ||
+ | point a, b, c, d, e, f; | ||
+ | a = (10,10); | ||
+ | b = (0,10); | ||
+ | c = (0,0); | ||
+ | d = (10,0); | ||
+ | e = (2, 2); | ||
+ | f = (8, 2); | ||
+ | |||
+ | draw(line((5,0),(5,10)), dashed+magenta); | ||
+ | |||
+ | draw(a--c, blue); | ||
+ | draw(e--f, blue); | ||
+ | filldraw(a--b--c--d--cycle, opacity(0.2)+palecyan, blue); | ||
+ | |||
+ | filldraw(circumcircle(a,b,e), opacity(0.2)+palegreen, green); | ||
+ | filldraw(circumcircle(c,d,e), opacity(0.2)+palegreen, green); | ||
+ | |||
+ | filldraw(b--f--c--cycle, opacity(0.2)+lightblue, blue); | ||
+ | |||
+ | dot("$A$", a, dir(30)); | ||
+ | dot("$B$", b, dir(150)); | ||
+ | dot("$C$", c, dir(220)); | ||
+ | dot("$D$", d, dir(340)); | ||
+ | dot("$E$", e, dir(180)); | ||
+ | dot("$F$", f, dir(0)); | ||
+ | </asy> |
Revision as of 14:54, 9 September 2025
Problem
In square point
is selected on diagonal
Let
be the intersection of the circumcircles of triangles
and
Given that
and
find the maximum possible area of triangle
(A circumcircle of some triangle
is the circle containing
,
, and
)
Solution
Note that by symmetry, is the reflection of
over the perpendicular bisector of
. Define coordinates
,
,
, and
. Since
, it follows that either
is
or
, so
is either
or
. The second case produces the larger solution of
size(7cm); point a, b, c, d, e, f; a = (10,10); b = (0,10); c = (0,0); d = (10,0); e = (2, 2); f = (8, 2); draw(line((5,0),(5,10)), dashed+magenta); draw(a--c, blue); draw(e--f, blue); filldraw(a--b--c--d--cycle, opacity(0.2)+palecyan, blue); filldraw(circumcircle(a,b,e), opacity(0.2)+palegreen, green); filldraw(circumcircle(c,d,e), opacity(0.2)+palegreen, green); filldraw(b--f--c--cycle, opacity(0.2)+lightblue, blue); dot("$A$", a, dir(30)); dot("$B$", b, dir(150)); dot("$C$", c, dir(220)); dot("$D$", d, dir(340)); dot("$E$", e, dir(180)); dot("$F$", f, dir(0)); (Error making remote request. Unknown error_msg)