Difference between revisions of "2025 SSMO Speed Round Problems/Problem 4"
(Created page with "==Problem== In rectangle <math>ABCD,</math> let <math>AB = 8,BC = 15,\omega</math> be the circumcircle of <math>ABCD</math>, <math>\ell</math> be the line through <math>B</ma...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | <asy> | ||
+ | import geometry; | ||
+ | unitsize(3cm); | ||
+ | |||
+ | point B=dir(aSin(0.47)); point C=dir(180-aSin(0.47)); point D=dir(180+aSin(0.47)); point A=dir(-aSin(0.47)); | ||
+ | <br /> point X= | ||
+ | |||
+ | draw(A--B--C--D--cycle,p=black+0.3mm); | ||
+ | draw(unitcircle,p=blue+0.3mm); | ||
+ | |||
+ | dot(A,linewidth(4)); dot(B,linewidth(4)); dot(C,linewidth(4)); dot(D,linewidth(4)); | ||
+ | |||
+ | label("$A$",A,dir(45)); | ||
+ | label("$B$",B,dir(135)); | ||
+ | label("$C$",C,dir(215)); | ||
+ | label("$D$",D,dir(-45)); | ||
+ | label("$\omega$",(0,-0.9)); | ||
+ | </asy> |
Revision as of 15:38, 9 September 2025
Problem
In rectangle let
be the circumcircle of
,
be the line through
parallel to
and
be the intersection of
and
. Suppose the value of
can be expressed as
where
and
are relatively prime positive integers. Find
.
Solution
import geometry; unitsize(3cm); point B=dir(aSin(0.47)); point C=dir(180-aSin(0.47)); point D=dir(180+aSin(0.47)); point A=dir(-aSin(0.47)); <br /> point X= draw(A--B--C--D--cycle,p=black+0.3mm); draw(unitcircle,p=blue+0.3mm); dot(A,linewidth(4)); dot(B,linewidth(4)); dot(C,linewidth(4)); dot(D,linewidth(4)); label("$A$",A,dir(45)); label("$B$",B,dir(135)); label("$C$",C,dir(215)); label("$D$",D,dir(-45)); label("$\omega$",(0,-0.9)); (Error making remote request. Unknown error_msg)