Difference between revisions of "2023 SSMO Team Round Problems/Problem 12"
(Created page with "==Problem== Let <math>T</math> be the set of rationals of the form <math>\frac{a}{2^b}</math> for nonnegative <math>a</math> and <math>b</math>. Define the function <math>f \c...") |
|||
Line 13: | Line 13: | ||
==Solution== | ==Solution== | ||
+ | Define | ||
+ | <cmath>S_n = \sum_{i=0}^{2^n-1} \frac{f\left(\frac{i+1}{2^n}\right)}{f\left(\frac{i}{2^n}\right)}</cmath> | ||
+ | for <math>n \ge 1</math>. We want to find <math>S_{10}</math>. | ||
+ | |||
+ | We claim by induction that | ||
+ | <cmath>S_n = \frac{5}{2} + 3 \cdot (2^{n-1} - 1).</cmath> | ||
+ | |||
+ | The base case is <math>S_1 = \frac{f(\frac{1}{2})}{f(0)} + \frac{f(1)}{f(\frac{1}{2})} = \frac{3}{2} + 1 = \frac{5}{2}</math>, so it holds. | ||
+ | |||
+ | Now suppose the formula holds for some <math>n</math>. Note that for <math>t \in [0,1]</math>, by symmetry we have <math>f(t) = f(1 - t)</math>. | ||
+ | |||
+ | Next, observe: | ||
+ | \begin{align*} | ||
+ | S_{n+1} &= \sum_{i=0}^{2^{n+1}-1} \frac{f\left(\frac{i+1}{2^{n+1}}\right)}{f\left(\frac{i}{2^{n+1}}\right)} \\ | ||
+ | &= \sum_{i=0}^{2^{n}-1} \left[ \frac{f\left(\frac{2i+1}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+1}{2^{n+1}}\right)} \right]. | ||
+ | \end{align*} | ||
+ | |||
+ | Since <math>f\left(\frac{2i+1}{2^{n+1}}\right) = f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)</math>, the two terms become: | ||
+ | \begin{align*} | ||
+ | &\frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \\ | ||
+ | &= 1 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + 1 + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} = 2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}. | ||
+ | \end{align*} | ||
+ | |||
+ | Summing over <math>i</math> from <math>0</math> to <math>2^{n-1} - 1</math>, we get: | ||
+ | \begin{align*} | ||
+ | S_{n+1} &= \sum_{i=0}^{2^{n-1} - 1} \left(2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}\right) \\ | ||
+ | &= 2 \cdot 2^{n-1} + \sum_{i=0}^{2^{n-1}-1} \left( \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \right) \\ | ||
+ | &= 2^{n} + S_n + 2^{n} = S_n + 3 \cdot 2^{n-1}. | ||
+ | \end{align*} | ||
+ | |||
+ | So the recurrence is valid. | ||
+ | |||
+ | Applying the closed-form: | ||
+ | <cmath>S_{10} = \frac{5}{2} + 3 \cdot (2^9 - 1) = \frac{5}{2} + 3 \cdot 511 = \frac{5}{2} + 1533 = \frac{3071}{2},</cmath> | ||
+ | so the final answer is <math>\boxed{3073}</math>. | ||
+ | |||
+ | ~SMO_Team |
Latest revision as of 21:33, 9 September 2025
Problem
Let be the set of rationals of the form
for nonnegative
and
. Define the function
such that, for
such
is minimal, we have that
Suppose
equals
. Find
.
Solution
Define
for
. We want to find
.
We claim by induction that
The base case is , so it holds.
Now suppose the formula holds for some . Note that for
, by symmetry we have
.
Next, observe: \begin{align*} S_{n+1} &= \sum_{i=0}^{2^{n+1}-1} \frac{f\left(\frac{i+1}{2^{n+1}}\right)}{f\left(\frac{i}{2^{n+1}}\right)} \\ &= \sum_{i=0}^{2^{n}-1} \left[ \frac{f\left(\frac{2i+1}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+1}{2^{n+1}}\right)} \right]. \end{align*}
Since , the two terms become:
\begin{align*}
&\frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \\
&= 1 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + 1 + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} = 2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}.
\end{align*}
Summing over from
to
, we get:
\begin{align*}
S_{n+1} &= \sum_{i=0}^{2^{n-1} - 1} \left(2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}\right) \\
&= 2 \cdot 2^{n-1} + \sum_{i=0}^{2^{n-1}-1} \left( \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \right) \\
&= 2^{n} + S_n + 2^{n} = S_n + 3 \cdot 2^{n-1}.
\end{align*}
So the recurrence is valid.
Applying the closed-form:
so the final answer is
.
~SMO_Team