Difference between revisions of "2023 SSMO Team Round Problems/Problem 13"
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
+ | Let <math>\tau(n)</math> denote the number of factors of an integer <math>n</math>. Then <math>D(n) = n^{\tau(n)/2}</math>, which can be proved by pairing up factors whose product is <math>n</math>. | ||
+ | |||
+ | So, | ||
+ | <cmath>D(10^a) = (10^a)^{\frac{(a+1)^2}{2}} = 10^{\frac{a(a+1)^2}{2}}.</cmath> | ||
+ | |||
+ | The set <math>P(10^2, 10^{a+2})</math> consists of integers of the form <math>100m</math> where <math>m \mid 10^a</math>. Therefore, the product of elements of <math>P</math> is | ||
+ | <cmath>\prod_{m \mid 10^a} 100m = 100^{(a+1)^2/2} \cdot D(10^a).</cmath> | ||
+ | |||
+ | Now, the value of <math>F(a)</math> is | ||
+ | <cmath>F(a) = -\sqrt{\left|\log_{10} \left( \frac{D(10^a)}{100^{(a+1)^2/2} \cdot D(10^a)} \right) \right|} = -\sqrt{|\log_{10}(10^{-(a+1)^2})|} = -a - 1.</cmath> | ||
+ | |||
+ | Next, calculating <math>G(n)</math>: | ||
+ | \begin{align*} | ||
+ | G(n) &= \sqrt[n-1]{\prod_{i=2}^n 10^{-i-1}} = \sqrt[n-1]{10^{-\sum_{i=2}^n (i+1)}} \\ | ||
+ | &= \sqrt[n-1]{10^{-(n(n+1)/2 - 1)}} = 10^{\frac{-(n+4)}{2}}. | ||
+ | \end{align*} | ||
+ | |||
+ | Finally, | ||
+ | <cmath>\sum_{k=2}^\infty 10^{\frac{-(k+4)}{2}} = \sum_{k=6}^\infty 10^{-k/2} = \frac{10^{-3}}{1 - 10^{-1/2}} = \frac{1}{1000} \cdot \frac{1}{1 - \frac{1}{\sqrt{10}}} = \frac{10 + \sqrt{10}}{9000},</cmath> | ||
+ | |||
+ | giving a final answer of | ||
+ | <cmath>10 + 1 + 10 + 9000 = \boxed{9021}.</cmath> | ||
+ | ~ | ||
+ | ~SMO_Team |
Revision as of 21:36, 9 September 2025
Problem
Let denote the product of all divisors of
Let
denote the set of all integers that are both a multiple of
and a factor of
Let
Suppose
is
. Find the value of
.
Solution
Let denote the number of factors of an integer
. Then
, which can be proved by pairing up factors whose product is
.
So,
The set consists of integers of the form
where
. Therefore, the product of elements of
is
Now, the value of is
Next, calculating :
\begin{align*}
G(n) &= \sqrt[n-1]{\prod_{i=2}^n 10^{-i-1}} = \sqrt[n-1]{10^{-\sum_{i=2}^n (i+1)}} \\
&= \sqrt[n-1]{10^{-(n(n+1)/2 - 1)}} = 10^{\frac{-(n+4)}{2}}.
\end{align*}
Finally,
giving a final answer of
~
~SMO_Team