Difference between revisions of "2024 SSMO Relay Round 2 Problems/Problem 2"

(Created page with "==Problem== Let <math>T = TNYWR.</math> If <cmath>a = \sum_{n=1}^{N}n(n+1)(n+2),</cmath> find the last three digits of <math>a.</math> ==Solution==")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
We seek to find the last three digits of <math>\sum_{n=1}^{19}n(n+1)(n+2).</math> Note that
 +
\begin{align*}
 +
\sum_{n=1}^{19}n(n+1)(n+2)&=\sum_{n=1}^{19}(n^3+3n^2+2n)\\
 +
&=\sum_{n=1}^{19}n^3+3\sum_{n=1}^{19}n^2+2\sum_{n=1}^{19}n\\
 +
&=\left(\frac{19\cdot20}{2}\right)^2+3\left(\frac{19\cdot20\cdot39}{6}\right)+2\left(\frac{19\cdot20}{2}\right)\\
 +
&=190^2+(19\cdot39)\cdot10+380\\
 +
&=36100+7410+380\\
 +
&\equiv100+410+380\\
 +
&\equiv\boxed{890}\pmod{1000}.
 +
\end{align*}
 +
 +
~SMO_Team

Latest revision as of 14:43, 10 September 2025

Problem

Let $T = TNYWR.$ If \[a = \sum_{n=1}^{N}n(n+1)(n+2),\] find the last three digits of $a.$

Solution

We seek to find the last three digits of $\sum_{n=1}^{19}n(n+1)(n+2).$ Note that \begin{align*} \sum_{n=1}^{19}n(n+1)(n+2)&=\sum_{n=1}^{19}(n^3+3n^2+2n)\\ &=\sum_{n=1}^{19}n^3+3\sum_{n=1}^{19}n^2+2\sum_{n=1}^{19}n\\ &=\left(\frac{19\cdot20}{2}\right)^2+3\left(\frac{19\cdot20\cdot39}{6}\right)+2\left(\frac{19\cdot20}{2}\right)\\ &=190^2+(19\cdot39)\cdot10+380\\ &=36100+7410+380\\ &\equiv100+410+380\\ &\equiv\boxed{890}\pmod{1000}. \end{align*}

~SMO_Team