Difference between revisions of "2024 SSMO Relay Round 3 Problems/Problem 2"

(Created page with "==Problem== Let <math>T = TNYWR.</math> Find the greatest odd integer <math>n</math> for which <math>n^2+(T-1)n</math> is a perfect square. ==Solution==")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
We have <math>n^2+99n = s^2,</math> for some integer <math>s.</math> Factoring, we have <cmath>\left(\left(n+\frac{99}{2}\right)+s\right)\left(\left(n+\frac{99}{2}\right)-s\right)=\frac{99^2}{4}\implies</cmath><cmath>(2n+99-2s)(2n+99+2s) = 99^2.</cmath> To maximize <math>n,</math> we let <math>2n+99-2s = 1</math> and <math>2n+99+2s = 99^2 = 9801.</math> This gives <math>n = \frac{\frac{9801+1}{2}-99}{2} = \boxed{2401}.</math>
 +
 +
~SMO_Team

Latest revision as of 14:46, 10 September 2025

Problem

Let $T = TNYWR.$ Find the greatest odd integer $n$ for which $n^2+(T-1)n$ is a perfect square.

Solution

We have $n^2+99n = s^2,$ for some integer $s.$ Factoring, we have \[\left(\left(n+\frac{99}{2}\right)+s\right)\left(\left(n+\frac{99}{2}\right)-s\right)=\frac{99^2}{4}\implies\]\[(2n+99-2s)(2n+99+2s) = 99^2.\] To maximize $n,$ we let $2n+99-2s = 1$ and $2n+99+2s = 99^2 = 9801.$ This gives $n = \frac{\frac{9801+1}{2}-99}{2} = \boxed{2401}.$

~SMO_Team