Difference between revisions of "2025 SSMO Accuracy Round Problems/Problem 1"
(Created page with "==Problem== An infinite sequence of real numbers <math>a_1, a_2, \dots</math> satisfies <cmath>a_n = a_1+a_2+\dots+a_{n-1}</cmath> for all positive integers <math>n > 1</math...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | Note that for every positive integer <math>n > 2</math>, by the given recurrence relation, we have | ||
+ | \begin{align*} | ||
+ | a_n &= a_{n-1} + a_{n-2} + \cdots + a_1 \\ | ||
+ | &= (a_{n-2} + \cdots + a_1) + a_{n-2} + \cdots + a_1 \\ | ||
+ | &= 2(a_{n-2} + \cdots + a_1) \\ | ||
+ | &= 2a_{n-1}. | ||
+ | \end{align*} | ||
+ | Therefore, <math>a_{25} = 2a_{24} = 4a_{23} = 8a_{22} = 16a_{21} = 32a_{20} = \boxed{800}</math>. | ||
+ | |||
+ | ~Sedro |
Latest revision as of 01:54, 11 September 2025
Problem
An infinite sequence of real numbers satisfies
for all positive integers
. Given that
find
.
Solution
Note that for every positive integer , by the given recurrence relation, we have
\begin{align*}
a_n &= a_{n-1} + a_{n-2} + \cdots + a_1 \\
&= (a_{n-2} + \cdots + a_1) + a_{n-2} + \cdots + a_1 \\
&= 2(a_{n-2} + \cdots + a_1) \\
&= 2a_{n-1}.
\end{align*}
Therefore,
.
~Sedro