Difference between revisions of "2023 WSMO Tiebreaker Round Problems/Problem 2"
(Created page with "==Problem== If <math>x^3+y^3=76895, x<y</math> and <math>x+y=65,</math> find <math>xy.</math> ==Solution==") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | Note that | ||
+ | <cmath>\begin{align*} | ||
+ | xy &= \frac{xy(x+y)}{(x+y)}\\ | ||
+ | &= \frac{1}{3}\left(\frac{3x^2y+3xy^2}{x+y}\right)\\ | ||
+ | &= \frac{1}{3}\left(\frac{(x^3+3x^2y+3xy^2+y^3)-(x^3+y^3)}{x+y}\right)\\ | ||
+ | &= \frac{1}{3}\left(\frac{(x+y)^3-(x^3+y^3)}{x+y}\right)\\ | ||
+ | &= \frac{1}{3}\left(\frac{65^3-76895}{65}\right)\\ | ||
+ | &= \frac{65^2-1183}{3} = \boxed{1014}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 10:46, 15 September 2025
Problem
If and
find
Solution
Note that
~pinkpig