Difference between revisions of "2023 SSMO Relay Round 1 Problems/Problem 3"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>T=TNYWR</math>. Find the number of solutions to the equation | Let <math>T=TNYWR</math>. Find the number of solutions to the equation | ||
− | <cmath>\sec^{ | + | <cmath>\sec^{T} (Tx) - \tan^{T}(Tx) = 1</cmath> |
such <math>0 \le x \le \pi</math> | such <math>0 \le x \le \pi</math> | ||
==Solution== | ==Solution== | ||
+ | We have <math>T = 2022</math>. Let | ||
+ | <cmath>\begin{align*} | ||
+ | S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | ||
+ | &= 0+1+2022+\sum_{i=3}^\infty \left(a_{i-1}-\frac{a_{i-3}}{8}\right)\\ | ||
+ | &= 2023+\sum_{i=3}^{\infty}a_{i-1}-\sum_{i=3}^\infty\frac{a_{i-3}}{8}\\ | ||
+ | &= 2023+\sum_{i=2}^\infty a_i-\frac{\sum_{i=0}a_i}{8}\\ | ||
+ | &= 2023+\left(\sum_{i=0}^\infty a_i-a_0-a_1\right)-\frac{S}{8}\\ | ||
+ | &= 2023+(S-0-1)-\frac{S}{8}\\ | ||
+ | &= 2022+\frac{7S}{8}.\\ | ||
+ | \end{align*}</cmath> | ||
+ | We have | ||
+ | <cmath>\begin{align*} | ||
+ | S &= 2022+\frac{7S}{8}\implies\\ | ||
+ | \frac{S}{8} &= 2022\implies\\ | ||
+ | S &= 8\cdot2022 = \boxed{16176}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Revision as of 11:23, 15 September 2025
Problem
Let . Find the number of solutions to the equation
such
Solution
We have . Let
We have
~pinkpig