Difference between revisions of "2012 AMC 8 Problems/Problem 22"

m (Solution 2)
(Solution 1)
Line 3: Line 3:
  
 
<math> \textbf{(A)}\hspace{.05in}4\qquad\textbf{(B)}\hspace{.05in}5\qquad\textbf{(C)}\hspace{.05in}6\qquad\textbf{(D)}\hspace{.05in}7\qquad\textbf{(E)}\hspace{.05in}8 </math>
 
<math> \textbf{(A)}\hspace{.05in}4\qquad\textbf{(B)}\hspace{.05in}5\qquad\textbf{(C)}\hspace{.05in}6\qquad\textbf{(D)}\hspace{.05in}7\qquad\textbf{(E)}\hspace{.05in}8 </math>
 
==Solution 1==
 
First, we find that the minimum value of the median of <math> R </math> will be <math> 3 </math>.
 
 
We then experiment with sequences of numbers to determine other possible medians.
 
 
Median: <math> 3 </math>
 
 
Sequence: <math> -2, -1, 0, 2, 3, 4, 6, 9, 14 </math>
 
 
Median: <math> 4 </math>
 
 
Sequence: <math> -1, 0, 2, 3, 4, 6, 9, 10, 14 </math>
 
 
Median: <math> 5 </math>
 
 
Sequence: <math> 0, 2, 3, 4, 5, 6, 9, 10, 14 </math>
 
 
Median: <math> 6 </math>
 
 
Sequence: <math> 0, 2, 3, 4, 6, 9, 10, 14, 15 </math>
 
 
Median: <math> 7 </math>
 
 
Sequence: <math> 2, 3, 4, 6, 7, 8, 9, 10, 14 </math>
 
 
Median: <math> 8 </math>
 
 
Sequence: <math> 2, 3, 4, 6, 8, 9, 10, 14, 15 </math>
 
 
Median: <math> 9 </math>
 
 
Sequence: <math> 2, 3, 4, 6, 9, 14, 15, 16, 17 </math>
 
 
Any number greater than <math> 9 </math> also cannot be a median of set <math> R </math>.
 
 
Therefore, the answer is <math>\boxed{\textbf{(D)}\ 7}</math>.
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 14:50, 25 September 2025

Problem

Let $R$ be a set of nine distinct integers. Six of the elements are $2$, $3$, $4$, $6$, $9$, and $14$. What is the number of possible values of the median of $R$?

$\textbf{(A)}\hspace{.05in}4\qquad\textbf{(B)}\hspace{.05in}5\qquad\textbf{(C)}\hspace{.05in}6\qquad\textbf{(D)}\hspace{.05in}7\qquad\textbf{(E)}\hspace{.05in}8$

Solution 2

Let the values of the missing integers be $x, y, z$. We will find the bound of the possible medians.

The smallest possible median will happen when we order the set as $\{x, y, z, 2, 3, 4, 6, 9, 14\}$. The median is $3$.

The largest possible median will happen when we order the set as $\{2, 3, 4, 6, 9, 14, x, y, z\}$. The median is $9$.

Therefore, the median must be between $3$ and $9$ inclusive, yielding $\boxed{\textbf{(D)}\ 7}$ possible medians.

~superagh

Video Solution

https://youtu.be/yBSrLxv0LbY ~savannahsolver

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png