Difference between revisions of "2005 iTest Problems/Problem 10"
(Created page with "==Problem== How many distinct integral solutions of the form <math>(x, y)</math> exist to the equation<math> 21x + 22y = 43</math> such that <math>1 < x < 11</math> and <math>...") |
(→Problem) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
==Solution 1== | ==Solution 1== | ||
Let <math>x = \frac{43 - 22y}{21}</math> such that <math>1 < \frac{43 - 22y}{21} < 11</math>. This means that <math>-\frac{94}{11} < y < 1</math>. If <math>y \in \mathbb{Z}</math>, then <math>y ={-8,-7,-6,-5,-4,-3,-2,-1,0}</math>. However, none of these values for <math>y</math> results in a complementary integral value for <math>x</math>. Therefore, there are <math>\boxed{0}</math> integer solutions <math>x, y \in \mathbb{Z}</math> that solves <math>21x + 22y = 43</math> over <math>1 < x < 11</math> and <math>y < 22</math>. | Let <math>x = \frac{43 - 22y}{21}</math> such that <math>1 < \frac{43 - 22y}{21} < 11</math>. This means that <math>-\frac{94}{11} < y < 1</math>. If <math>y \in \mathbb{Z}</math>, then <math>y ={-8,-7,-6,-5,-4,-3,-2,-1,0}</math>. However, none of these values for <math>y</math> results in a complementary integral value for <math>x</math>. Therefore, there are <math>\boxed{0}</math> integer solutions <math>x, y \in \mathbb{Z}</math> that solves <math>21x + 22y = 43</math> over <math>1 < x < 11</math> and <math>y < 22</math>. |
Revision as of 17:25, 13 October 2025
Solution 1
Let such that
. This means that
. If
, then
. However, none of these values for
results in a complementary integral value for
. Therefore, there are
integer solutions
that solves
over
and
.
See Also
2005 iTest (Problems, Answer Key) | ||
Preceded by: Problem 9 |
Followed by: Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |