Difference between revisions of "2016 AMC 10B Problems/Problem 1"

(Solution 2)
(See Also)
 
Line 29: Line 29:
 
{{AMC10 box|year=2016|ab=B|before=-|num-a=2}}
 
{{AMC10 box|year=2016|ab=B|before=-|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
[[Category: Introductory Algebra Problems]]

Latest revision as of 17:54, 18 October 2025

Problem

What is the value of $\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}$ when $a= \tfrac{1}{2}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Solution

Factorizing the numerator, $\frac{\frac{1}{a}\cdot(2+\frac{1}{2})}{a}$ then becomes $\frac{\frac{5}{2}}{a^{2}}$ which is equal to $\frac{5}{2}\cdot 2^2$ which is $\boxed{\textbf{(D) }10}$.

Solution 2

Substituting $\frac{1}{2}$ for $a$ in $\frac{\frac{1}{a}\cdot(2+\frac{1}{2})}{a}$ gives us $\boxed{\textbf{(D) }10}$.

Remember, $x^{-y}=\frac{1}{x^y}$!

Video Solution (CREATIVE THINKING)

https://youtu.be/2erUXM5pD2g

~Education, the Study of Everything


Video Solution

https://youtu.be/1IZ3oj1iGf0

~savannahsolver

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
-
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png