Difference between revisions of "2000 CEMC Gauss (Grade 8) Problems/Problem 3"
(Created page with "==Problem== The value of <math>\frac{5 + 4 - 3}{5 + 4 + 3}</math> is <math> \text{ (A) }\ -1 \qquad\text{ (B) }\ \frac{1}{3} \qquad\text{ (C) }\ 2 \qquad\text{ (D) }\ \frac...") |
|||
| Line 11: | Line 11: | ||
~anabel.disher | ~anabel.disher | ||
| + | {{CEMC box|year=2000|competition=Gauss (Grade 8)|num-b=2|num-a=4}} | ||
Latest revision as of 13:39, 20 October 2025
Problem
The value of
is
Solution
Evaluating the numerator and denominator, we have:
Simplifying this gives
.
~anabel.disher
| 2000 CEMC Gauss (Grade 8) (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| CEMC Gauss (Grade 8) | ||