Difference between revisions of "PaperMath’s sum"
m |
m (→Statement) |
||
| Line 4: | Line 4: | ||
'''PaperMath’s sum''' states, | '''PaperMath’s sum''' states, | ||
| − | <math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math> | + | <math>\sum_{i=0}^{2n-1} {\left(10^ix^2\right)}=\left(\sum_{j=0}^{n-1}{\left(10^j3x\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(10^k2x^2\right)}</math> |
Or | Or | ||
| − | <math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math> | + | <math>x^2\sum_{i=0}^{2n-1} {10^i}=\left(3x \sum_{j=0}^{n-1} {\left(10^j\right)}\right)^2 + 2x^2\sum_{k=0}^{n-1} {\left(10^k\right)}</math> |
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | ||
| − | <math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math> | + | <math>\sum_{i=0}^{2n-1} {10^i}=\left(\sum_{j=0}^{n -1}{\left(3 \times 10^j\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(2 \times 10^k\right)}</math> |
== Proof == | == Proof == | ||
Latest revision as of 16:51, 24 October 2025
PaperMath's sum is a thereom discovered by the AoPS user Papermath on October 8th, 2023.
Contents
Statement
PaperMath’s sum states,
Or
For all real values of
, this equation holds true for all nonnegative values of
. When
, this reduces to
Proof
First, note that the
part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that
and
concludes the proof.
Problems
For a positive integer
and nonzero digits
,
, and
, let
be the
-digit integer each of whose digits is equal to
; let
be the
-digit integer each of whose digits is equal to
, and let
be the
-digit (not
-digit) integer each of whose digits is equal to
. What is the greatest possible value of
for which there are at least two values of
such that
?
(Source)
See also
This article is a stub. Help us out by expanding it.