Difference between revisions of "2020 AMC 12A Problems/Problem 22"
(→Solution 4 - Author : Shiva Kumar Kannan - IN PROGRESS, PLEASE DO NOT MESS) |
(→Solution 3) |
||
| Line 31: | Line 31: | ||
== Solution 3 == | == Solution 3 == | ||
Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2i}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields | Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2i}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields | ||
| − | + | \begin{align*} | |
\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}&=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}] \\ | \tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}&=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}] \\ | ||
&=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}] \\ | &=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}] \\ | ||
| Line 37: | Line 37: | ||
&=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32} \\ | &=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32} \\ | ||
&=\boxed{\tfrac{7}{16}}\textbf{(B)} | &=\boxed{\tfrac{7}{16}}\textbf{(B)} | ||
| − | \end{align*} | + | \end{align*} |
-vsamc | -vsamc | ||
| − | |||
== Video Solution by Richard Rusczyk == | == Video Solution by Richard Rusczyk == | ||
Revision as of 22:11, 2 November 2025
Contents
Problem
Let
and
be the sequences of real numbers such that
for all integers
, where
. What is
Solution 1
Square the given equality to yield
so
and
Solution 2 (DeMoivre's Formula)
Note that
. Let
, then, we know that
so
Therefore,
Aha!
is a geometric sequence that evaluates to
! Now we can quickly see that
Therefore,
The imaginary part is
, so our answer is
.
~AopsUser101
Solution 3
Clearly
. So we have
. By linearity, we have the latter is equivalent to
. Expanding the summand yields
\begin{align*}
\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}&=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}] \\
&=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}] \\
&=\tfrac{1}{4}[\tfrac{7}{4-4i}-\tfrac{7}{4+4i}] \\
&=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32} \\
&=\boxed{\tfrac{7}{16}}\textbf{(B)}
\end{align*}
-vsamc
Video Solution by Richard Rusczyk
https://www.youtube.com/watch?v=OdSTfCDOh5A
- AMBRIGGS
See Also
| 2020 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 21 |
Followed by Problem 23 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.