|
|
| Line 2: |
Line 2: |
| | | | |
| | ==Problem 1== | | ==Problem 1== |
| − | Cities <math>A</math> and <math>B</math> are <math>45</math> miles apart. Alicia lives in <math>A</math> and Beth lives in <math>B</math>. Alicia bikes towards <math>B</math> at 18 miles per hour. Leaving at the same time, Beth bikes toward <math>A</math> at 12 miles per hour. How many miles from City <math>A</math> will they be when they meet?
| |
| − |
| |
| − | <math>\textbf{(A) }20\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27</math>
| |
| | | | |
| | ==Problem 2== | | ==Problem 2== |
| − | The weight of <math>\frac{1}{3}</math> of a large pizza together with <math>3 \frac{1}{2}</math> cups of orange slices is the same weight of <math>\frac{3}{4}</math> of a large pizza together with <math>\frac{1}{2}</math> cups of orange slices. A cup of orange slices weigh <math>\frac{1}{4}</math> of a pound. What is the weight, in pounds, of a large pizza?
| |
| − |
| |
| − | <math>\textbf{(A) }1\frac{4}{5}\qquad\textbf{(B) }2\qquad\textbf{(C) }2\frac{2}{5}\qquad\textbf{(D) }3\qquad\textbf{(E) }3\frac{3}{5}</math>
| |
| | | | |
| | ==Problem 3== | | ==Problem 3== |
| − | How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
| |
| − |
| |
| − | <math>\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math>
| |
| | | | |
| | ==Problem 4== | | ==Problem 4== |
| − | How many digits are in the base-ten representation of <math>8^5 \cdot 5^{10} \cdot 15^5</math>?
| |
| − |
| |
| − | <math>\textbf{(A)}~14\qquad\textbf{(B)}~15\qquad\textbf{(C)}~16\qquad\textbf{(D)}~17\qquad\textbf{(E)}~18\qquad</math>
| |
| | | | |
| | ==Problem 5== | | ==Problem 5== |
| − | Janet rolls a standard <math>6</math>-sided die <math>4</math> times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal <math>3?</math>
| |
| − |
| |
| − | <math>\textbf{(A) }\frac{2}{9}\qquad\textbf{(B) }\frac{49}{216}\qquad\textbf{(C) }\frac{25}{108}\qquad\textbf{(D) }\frac{17}{72}\qquad\textbf{(E) }\frac{13}{54}</math>
| |
| | | | |
| | ==Problem 6== | | ==Problem 6== |
| − | Points <math>A</math> and <math>B</math> lie on the graph of <math>y=\log_{2}x</math>. The midpoint of <math>\overline{AB}</math> is <math>(6, 2)</math>. What is the positive difference between the <math>x</math>-coordinates of <math>A</math> and <math>B</math>?
| |
| − |
| |
| − | <math>\textbf{(A)}~2\sqrt{11}\qquad\textbf{(B)}~4\sqrt{3}\qquad\textbf{(C)}~8\qquad\textbf{(D)}~4\sqrt{5}\qquad\textbf{(E)}~9</math>
| |
| | | | |
| | ==Problem 7== | | ==Problem 7== |
| − | A digital display shows the current date as an <math>8</math>-digit integer consisting of a <math>4</math>-digit year, followed by a <math>2</math>-digit month, followed by a <math>2</math>-digit date within the month. For example, Arbor Day this year is displayed as <math>20230428</math>. For how many dates in <math>2023</math> will each digit appear an even number of times in the 8-digital display for that date?
| |
| − |
| |
| − | <math>\textbf{(A)}~5\qquad\textbf{(B)}~6\qquad\textbf{(C)}~7\qquad\textbf{(D)}~8\qquad\textbf{(E)}~9</math>
| |
| | | | |
| | ==Problem 8== | | ==Problem 8== |
| − | Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an <math>11</math> on the next quiz, her mean will increase by <math>1</math>. If she scores an <math>11</math> on each of the next three quizzes, her mean will increase by <math>2</math>. What is the mean of her quiz scores currently?
| |
| − |
| |
| − | <math>\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8</math>
| |
| | | | |
| | ==Problem 9== | | ==Problem 9== |