During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "2016 AIME I Problems/Problem 12"

(Solution 1a)
(Solution 2)
Line 23: Line 23:
  
 
==Solution 2==
 
==Solution 2==
First, we can show that <math>m^2 - m + 11 \not |</math>  <math> 2,3,5,7</math>. This can be done by just testing all residue classes.  
+
First, we can show that <math>2,3,5,7</math> <math>\not |</math>  <math>m^2 - m + 11. This can be done by just testing all residue classes.  
  
For example, we can test <math>m \equiv 0 \mod 2</math>  or  <math>m \equiv 1 \mod 2</math>  to show that <math>m^2 - m + 11</math> is not divisible by 2.
+
For example, we can test </math>m \equiv 0 \mod 2<math>  or  </math>m \equiv 1 \mod 2<math>  to show that </math>m^2 - m + 11<math> is not divisible by 2.
  
 
Case 1: m = 2k   
 
Case 1: m = 2k   
       <math>m^2 - m + 11  \equiv 2(2 \cdot k^2 - k + 5) +1 \equiv 1 \mod 2 </math>
+
       </math>m^2 - m + 11  \equiv 2(2 \cdot k^2 - k + 5) +1 \equiv 1 \mod 2 <math>
 
Case 2: m = 2k+1   
 
Case 2: m = 2k+1   
       <math>m^2 - m + 11  \equiv 2(2 \cdot k^2 + k + 5) +1 \equiv 1 \mod 2 </math>
+
       </math>m^2 - m + 11  \equiv 2(2 \cdot k^2 + k + 5) +1 \equiv 1 \mod 2 <math>
  
Now, we can test <math>m^2 - m + 11 = 11^4</math>, which fails, so we test <math>m^2 - m + 11 = 11^3 \cdot 13</math>, and we get m = <math>132</math>.
+
Now, we can test </math>m^2 - m + 11 = 11^4<math>, which fails, so we test </math>m^2 - m + 11 = 11^3 \cdot 13<math>, and we get m = </math>132$.
  
 
-AlexLikeMath
 
-AlexLikeMath

Revision as of 00:57, 4 November 2025

Problem

Find the least positive integer $m$ such that $m^2 - m + 11$ is a product of at least four not necessarily distinct primes.

Solution 1

$m(m-1)$ is the product of two consecutive integers, so it is always even. Thus $m(m-1)+11$ is odd and never divisible by $2$. Thus any prime $p$ that divides $m^2-m+11$ must divide $4m^2-4m+44=(2m-1)^2+43$. We see that $(2m-1)^2\equiv -43\pmod{p}$. We can verify that $-43$ is not a perfect square mod $p$ for each of $p=3,5,7$. Therefore, all prime factors of $m^2-m+11$ are $\ge 11$.

Let $m^2 - m + 11 = pqrs$ for primes $11\le p \le q \le r \le s$. From here, we could go a few different ways:

Solution 1a

Suppose $p=11$; then $m^2-m+11=11qrs$. Reducing modulo 11, we get $m\equiv  1,0 \pmod{11}$ so $k(11k\pm 1)+1 = qrs$.

Suppose $q=11$. Then we must have $11k^2\pm k + 1 = 11rs$, which leads to $k\equiv \pm 1 \pmod{11}$, i.e., $k\in \{1,10,12,21,23,\ldots\}$.

$k=1$ leads to $rs=1$ (impossible)! Then $k=10$ leads to $rs=101$, a prime (impossible). Finally, for $k=12$ we get $rs=143=11\cdot 13$.

Thus our answer is $m=11k= \boxed{132}$.

Solution 1b

Let $m^2 - m + 11 = pqrs$ for primes $p, q, r, s\ge11$. If $p, q, r, s = 11$, then $m^2-m+11=11^4$. We can multiply this by $4$ and complete the square to find $(2m-1)^2=4\cdot 11^4-43$. But \[(2\cdot 11^2-1)^2=4\cdot 11^4-4\cdot 11^2+1 <4\cdot 11^4-43<(2\cdot 11^2)^2,\] hence we have pinned a perfect square $(2m-1)^2=4\cdot 11^4-43$ strictly between two consecutive perfect squares, a contradiction. Hence $pqrs \ge 11^3 \cdot 13$. Thus $m^2-m+11\ge 11^3\cdot 13$, or $(m-132)(m+131)\ge0$. From the inequality, we see that $m \ge 132$. $132^2 - 132 + 11 = 11^3 \cdot 13$, so $m = \boxed{132}$ and we are done.

Solution 2

First, we can show that $2,3,5,7$ $\not |$ $m^2 - m + 11. This can be done by just testing all residue classes.

For example, we can test$ (Error compiling LaTeX. Unknown error_msg)m \equiv 0 \mod 2$or$m \equiv 1 \mod 2$to show that$m^2 - m + 11$is not divisible by 2.

Case 1: m = 2k$ (Error compiling LaTeX. Unknown error_msg)m^2 - m + 11 \equiv 2(2 \cdot k^2 - k + 5) +1 \equiv 1 \mod 2 $Case 2: m = 2k+1$m^2 - m + 11 \equiv 2(2 \cdot k^2 + k + 5) +1 \equiv 1 \mod 2 $Now, we can test$m^2 - m + 11 = 11^4$, which fails, so we test$m^2 - m + 11 = 11^3 \cdot 13$, and we get m =$132$.

-AlexLikeMath

Video Solution

https://youtu.be/KRleD8iDRhI

~MathProblemSolvingSkills.com


See Also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png