Difference between revisions of "2010 AMC 12A Problems/Problem 17"
m |
|||
| Line 7: | Line 7: | ||
It is clear that <math>\triangle ACE</math> is an equilateral triangle. From the [[Law of Cosines]], we get that <math>AC^2 = r^2+1^2-2r\cos{\frac{2\pi}{3}} = r^2+r+1</math>. Therefore, the area of <math>\triangle ACE</math> is <math>\frac{\sqrt{3}}{4}(r^2+r+1)</math>. | It is clear that <math>\triangle ACE</math> is an equilateral triangle. From the [[Law of Cosines]], we get that <math>AC^2 = r^2+1^2-2r\cos{\frac{2\pi}{3}} = r^2+r+1</math>. Therefore, the area of <math>\triangle ACE</math> is <math>\frac{\sqrt{3}}{4}(r^2+r+1)</math>. | ||
| − | If we extend <math>BC</math>, <math>DE</math> and <math>FA</math> so that <math>FA</math> and <math>BC</math> meet at <math>X</math>, <math>BC</math> and <math>DE</math> meet at <math>Y</math>, and <math>DE</math> and <math>FA</math> meet at <math>Z</math>, we find that hexagon <math>ABCDEF</math> is formed by taking equilateral triangle <math>XYZ</math> of side length <math>r+2</math> and removing three equilateral triangles, <math>ABX</math>, <math>CDY</math> and <math>EFZ</math>, of side length <math>1</math>. | + | If we extend <math>BC</math>, <math>DE</math> and <math>FA</math> so that <math>FA</math> and <math>BC</math> meet at <math>X</math>, <math>BC</math> and <math>DE</math> meet at <math>Y</math>, and <math>DE</math> and <math>FA</math> meet at <math>Z</math>, we find that hexagon <math>ABCDEF</math> is formed by taking equilateral triangle <math>XYZ</math> of side length <math>r+2</math> and removing three equilateral triangles, <math>ABX</math>, <math>CDY</math> and <math>EFZ</math>, of side length <math>1</math>. The area of <math>ABCDEF</math> is therefore |
| − | |||
| − | |||
| − | The area of <math>ABCDEF</math> is therefore | ||
<math>\frac{\sqrt{3}}{4}(r+2)^2-\frac{3\sqrt{3}}{4} = \frac{\sqrt{3}}{4}(r^2+4r+1)</math>. | <math>\frac{\sqrt{3}}{4}(r+2)^2-\frac{3\sqrt{3}}{4} = \frac{\sqrt{3}}{4}(r^2+4r+1)</math>. | ||
Revision as of 16:46, 11 February 2010
Problem
Equiangular hexagon
has side lengths
and
. The area of
is
of the area of the hexagon. What is the sum of all possible values of
?
Solution
It is clear that
is an equilateral triangle. From the Law of Cosines, we get that
. Therefore, the area of
is
.
If we extend
,
and
so that
and
meet at
,
and
meet at
, and
and
meet at
, we find that hexagon
is formed by taking equilateral triangle
of side length
and removing three equilateral triangles,
,
and
, of side length
. The area of
is therefore
.
Based on the initial conditions,
Simplifying this gives us
. By Vieta's Formulas we know that the sum of the possible value of
is
.