Difference between revisions of "1984 AIME Problems/Problem 9"
(replace with 3d asymptote) |
m (compatible with three?) |
||
| Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
<span style="font-size:50%">For non-asymptote version of image, see [[:Image:1984_AIME-9.png]].</span><center><asy> | <span style="font-size:50%">For non-asymptote version of image, see [[:Image:1984_AIME-9.png]].</span><center><asy> | ||
| + | /* modified version of olympiad modules */ | ||
| + | real markscalefactor = 0.03; | ||
| + | path3 rightanglemark(triple A, triple B, triple C, real s=8) | ||
| + | { | ||
| + | triple P,Q,R; | ||
| + | P=s*markscalefactor*unit(A-B)+B; | ||
| + | R=s*markscalefactor*unit(C-B)+B; | ||
| + | Q=P+R-B; | ||
| + | return P--Q--R; | ||
| + | } | ||
| + | path3 anglemark(triple A, triple B, triple C, real t=8 ... real[] s) | ||
| + | { | ||
| + | triple M,N,P[],Q[]; | ||
| + | path3 mark; | ||
| + | int n=s.length; | ||
| + | M=t*markscalefactor*unit(A-B)+B; | ||
| + | N=t*markscalefactor*unit(C-B)+B; | ||
| + | for (int i=0; i<n; ++i) | ||
| + | { | ||
| + | P[i]=s[i]*markscalefactor*unit(A-B)+B; | ||
| + | Q[i]=s[i]*markscalefactor*unit(C-B)+B; | ||
| + | } | ||
| + | mark=arc(B,M,N); | ||
| + | for (int i=0; i<n; ++i) | ||
| + | { | ||
| + | if (i%2==0) | ||
| + | { | ||
| + | mark=mark--reverse(arc(B,P[i],Q[i])); | ||
| + | } | ||
| + | else | ||
| + | { | ||
| + | mark=mark--arc(B,P[i],Q[i]); | ||
| + | } | ||
| + | } | ||
| + | if (n%2==0 && n!=0) | ||
| + | mark=(mark--B--P[n-1]); | ||
| + | else if (n!=0) | ||
| + | mark=(mark--B--Q[n-1]); | ||
| + | else mark=(mark--B--cycle); | ||
| + | return mark; | ||
| + | } | ||
| + | |||
size(200); | size(200); | ||
| − | import three; | + | import three; defaultpen(black+linewidth(0.7)); pen small = fontsize(10); |
triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); | triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); | ||
currentprojection=perspective(16,-10,8); | currentprojection=perspective(16,-10,8); | ||
| + | |||
| + | draw(surface(A--B--C--cycle),rgb(0.6,0.7,0.6),nolight); | ||
| + | draw(surface(A--B--D--cycle),rgb(0.7,0.6,0.6),nolight); | ||
/* draw pyramid - other lines + angles */ | /* draw pyramid - other lines + angles */ | ||
| − | + | draw(A--B--C--A--D--B--D--C); | |
| − | + | draw(D--Da--Db--cycle); | |
| + | draw(rightanglemark(D,Da,Db));draw(rightanglemark(A,Db,D));draw(anglemark(Da,Db,D,15)); | ||
/* labeling points */ | /* labeling points */ | ||
| − | + | label("$A$",A,SW);label("$B$",B,S);label("$C$",C,S);label("$D$",D,N);label("$30^{\circ}$",Db+(0,.35,0.08),(1.5,1.2),small); | |
| − | + | label("$3$",(A+B)/2,S); label("$15\mathrm{cm}^2$",(Db+C)/2+(0,-0.5,-0.1),NE,small); label("$12\mathrm{cm}^2$",(A+D)/2,NW,small); | |
</asy></center> | </asy></center> | ||
| Line 24: | Line 70: | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
| + | [[Category:3D Asymptote]] | ||
Revision as of 15:18, 16 March 2010
Problem
In tetrahedron
, edge
has length 3 cm. The area of face
is
and the area of face
is
. These two faces meet each other at a
angle. Find the volume of the tetrahedron in
.
Solution
For non-asymptote version of image, see Image:1984_AIME-9.png.
/* modified version of olympiad modules */
real markscalefactor = 0.03;
path3 rightanglemark(triple A, triple B, triple C, real s=8)
{
triple P,Q,R;
P=s*markscalefactor*unit(A-B)+B;
R=s*markscalefactor*unit(C-B)+B;
Q=P+R-B;
return P--Q--R;
}
path3 anglemark(triple A, triple B, triple C, real t=8 ... real[] s)
{
triple M,N,P[],Q[];
path3 mark;
int n=s.length;
M=t*markscalefactor*unit(A-B)+B;
N=t*markscalefactor*unit(C-B)+B;
for (int i=0; i<n; ++i)
{
P[i]=s[i]*markscalefactor*unit(A-B)+B;
Q[i]=s[i]*markscalefactor*unit(C-B)+B;
}
mark=arc(B,M,N);
for (int i=0; i<n; ++i)
{
if (i%2==0)
{
mark=mark--reverse(arc(B,P[i],Q[i]));
}
else
{
mark=mark--arc(B,P[i],Q[i]);
}
}
if (n%2==0 && n!=0)
mark=(mark--B--P[n-1]);
else if (n!=0)
mark=(mark--B--Q[n-1]);
else mark=(mark--B--cycle);
return mark;
}
size(200);
import three; defaultpen(black+linewidth(0.7)); pen small = fontsize(10);
triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0);
currentprojection=perspective(16,-10,8);
draw(surface(A--B--C--cycle),rgb(0.6,0.7,0.6),nolight);
draw(surface(A--B--D--cycle),rgb(0.7,0.6,0.6),nolight);
/* draw pyramid - other lines + angles */
draw(A--B--C--A--D--B--D--C);
draw(D--Da--Db--cycle);
draw(rightanglemark(D,Da,Db));draw(rightanglemark(A,Db,D));draw(anglemark(Da,Db,D,15));
/* labeling points */
label("$A$",A,SW);label("$B$",B,S);label("$C$",C,S);label("$D$",D,N);label("$30^{\circ}$",Db+(0,.35,0.08),(1.5,1.2),small);
label("$3$",(A+B)/2,S); label("$15\mathrm{cm}^2$",(Db+C)/2+(0,-0.5,-0.1),NE,small); label("$12\mathrm{cm}^2$",(A+D)/2,NW,small);
(Error making remote request. Unknown error_msg)Position face
on the bottom. Since
, we find that
. The height of
forms a
with the height of the tetrahedron, so
. The volume of the tetrahedron is thus
.
See also
| 1984 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||